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A. Dedner,∗,1 D. Kröner,∗ I. L. Sofronov,†,2 and M. Wesenberg∗,3
∗Institute for Applied Mathematics, University of Freiburg, Freiburg, Germany;

and†Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
E-mail: dedner@mathematik.uni-freiburg.de, dietmar@mathematik.uni-freiburg.de,

wesenber@mathematik.uni-freiburg.de, sofronov@spp.keldysh.ru

Received August 2, 2000; revised March 9, 2001

In this paper we discuss a method of deriving artificial nonreflecting boundary
conditions for systems of conservation laws. We focus on an application from so-
lar physics. The governing equations are the equations of ideal compressible mag-
netohydrodynamics (MHD), which are solved in a gravitationally stratified atmo-
sphere. We derive the necessary equations, discuss implementational aspects, and
show the effectiveness and efficiency of our boundary conditions in test calculations.
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1. INTRODUCTION

Numerical simulations have become an important tool for improving our understanding
of basic physical processes. Many applications of this type involve systems of conservation
laws and are formulated either in infinite domains or in domains which are very large in
comparison with the relevant structures. Even in the second case it can be almost impossible
to find a formulation of the problem which is suitable for numerical simulations: If we
perform the simulations in the whole domain with sufficient resolution to capture the small-
scale structures, we waste a great deal of computational effort in uninteresting regions.
Therefore, the size of the computational domain has to be severely reduced. This leads to
artificial boundaries without physical meaning. In order to close the system of PDEs we
have to find suitable boundary conditions on these boundaries. These artificial boundary
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conditions have to guarantee that the solutions in the truncated domain are as close as
possible to those obtained in the whole domain.

One of the physical processes mentioned above is the time-periodic variation in solar
activity. Its strength can be measured by the number and size of sunspots. Solar physicists
suggest the following model to explain their formation: In the lower convection zone,
the magnetic field concentrates in local tube-like structures within a stratified background
atmosphere. Because of magnetic buoyancy these so-called flux tubes rise to the photosphere
if their fragmentation is prevented by a sufficiently strong magnetic field tangential to their
boundary; their outbreak at the sun’s surface causes the visible sunspots. Hence the evolution
of these flux tubes has become a focus of research in recent years; see, e.g., [6, 7, 13, 15, 27].

The simulation of rising magnetic flux tubes requires the numerical solution of the ideal
compressible magnetohydrodynamic (MHD) equations. We use an explicit finite volume
scheme with approximate Riemann solvers at the cell interfaces [11]. The computational
domain is a portion of the solar convection zone with artificial vertical and horizontal
boundaries. As in many applications requiring long-time simulations, the problem of finding
suitable boundary conditions on these open boundaries has not yet been solved satisfactory.
On one hand, small structures have to be resolved and their evolution has to be tracked over
a long time period; on the other hand, the computational domain has to be chosen as small
as possible to minimize computational costs. It would be desirable that all boundaries—the
vertical as well as the horizontal ones—be transparent for outgoing waves. But since the
dominant movement is therise of the tube, the top boundary is the most critical one;
the influence of the vertical boundaries is much smaller. For instance, in [13] both vertical
boundaries and the bottom boundary are assumed to be “closed lids.” According to [24]
also the bottom boundary should be transparent. In the present study, we therefore focus
our attention on both horizontal boundaries, while we assume periodic vertical boundaries
in accordance with [6, 15, 24]. Our foremost concern is the derivation and validation of
transparent boundary conditions that are designed with the above application in mind. The
details of the physical assumptions and of the choice of the mathematical model are beyond
the scope of this paper and we consider them to be “input data” from solar physics.

The conditions on the horizontal boundaries should lead to solutions which are (prac-
tically) independent of the height of the computational domain. Waves generated in the
interior of the computational domain must be allowed to pass through the top and bottom
boundary; i.e., an ideal artificial boundary should be transparent for outgoing perturbations.
One method of achieving this is to absorb the outgoing waves by introducing additional
layers at the boundaries. (For solar physical simulations this method was used in [13, 24].)
As far as we know there is neither an analytical argument nor a detailed numerical study
which shows that this approach meets the stated requirement for a non-reflecting boundary
in the case of our application. However, the idea of absorbing layers seems to be a promising
approach. This has recently been demonstrated for many different problems in the form of
“perfectly matched layers;” see, e.g., [1, 5, 25, 32].

Our method of formulating nonreflecting boundary conditions belongs to the class of so-
called exact boundary conditions (cf. the reviews [16, 31]). It follows the technique presented
in [30], and develops ideas presented in [3, 17–19, 21, 23, 28, 29], where the derivation of
boundary conditions is considered for different hyperbolic problems. Our method is based
on the derivation of an analytically exact boundary condition for the hyperbolic equation
describing the evolution of the pressure perturbation. The condition necessarily includes a
term that isnon-localwith respect to time at the artificial boundaries. However, by using
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a special approximation this non-local term can be evaluated in a time-stepping manner
so that the numerical method stayslocal with respect to time. Preliminary results of our
research can be found in [10].

A necessary first step in the derivation of our boundary conditions is the linearization of
the MHD equations about a stratified background atmosphere—for other nonlinear prob-
lems this approach was used, for example, in [4, 14, 23, 26, 30]. We assume that the
perturbations at the boundary are sufficiently small and smooth. Furthermore, we study
the special case of an exponentially decaying atmosphere. This choice is quite reasonable
from the physical point of view [8, 20] and permits a sufficiently far-reaching analytical
study. At the same time, the application of our boundary conditions to other models of the
background atmosphere inside the computational domain seems to pose no problems. After
deriving the boundary conditions and proving their correctness for the linearized system,
we discuss implementational aspects and compare them with other more direct approaches.
Our numerical examples illustrate that the structure of the solution is considerably influ-
enced by the choice of the boundary conditions. Moreover, using our boundary conditions
we find that even large perturbations are hardly reflected at the artificial boundaries. The
examples indicate that the proposed transparent boundary conditions yield good results and
are very cheap with respect to their computational costs.

2. GOVERNING EQUATIONS

The equations of ideal MHD describe the flow of an electrically conducting fluid under the
influence of a magnetic field. They are obtained from the Euler equations of gas dynamics
and the Maxwell equations if relativistic, viscous, and resistive effects are neglected. They
are given by the following system of PDEs:

∂tρ +∇ · (ρu) = 0 (1a)

∂t (ρu)+∇ · (ρuuT + P) = ρg (1b)

∂tB+∇ × (B× u) = 0 (1c)

∂t e+∇ · (eu+ Pu) = ρg · u (1d)

∇ · B = 0. (1e)

The total pressure tensorP is given by

P =
(

p+ 1

8π
|B|2

)
I − 1

4π
BBT ; (2)

g= g(z) = (0, 0, g(z))t with g(z) < 0 is a prescribed function describing the gravitational
force, which acts in negativez-direction. Using an equation of state for the pressure (with
the constant adiabatic exponentγ > 1)

p = (γ − 1)

(
e− 1

2
ρ|u|2− 1

8π
|B|2

)
, (3)

the system can be rewritten as a hyperbolic system in the unknowns densityρ, momentum
ρu, magnetic fieldB, and total energye. From (1c) we get∂t (∇ · B) = 0, which allows us
to regard (1e) as an initial condition.



TRANSPARENT BOUNDARY CONDITIONS FOR MHD 451

3. GEOMETRY AND FORMULATION OF THE PROBLEM

We simplify the original solar physical problem in the following way: First, assuming
that the computational domain is small compared with the whole convection zone, we use
Cartesian (rather then spherical) coordinates (x, y, z) as in [13, 27]. Second, the computa-
tional domain is considered to be an elementary cell within a periodical structure along the
x- andy-axes. Moreover, we restrict ourselves to a two-dimensional situation; i.e., we as-
sume that all quantities depend onx, z, t and are independent ofy. Therefore all
y-derivatives in (1a)–(1e) vanish identically.

The domain of interest represents a sufficiently thin layer in the whole convection zone.
Therefore it is convenient to consider our computational domainÄcomp to be a portion of
the infinite “well” Ä := Äbot∪Äcomp∪Ätop (see Fig. 1),

Ä := [0, xr ] × (−∞,∞), (4a)

Äcomp := [0, xr ] × [zb, zt ], (4b)

Äbot := [0, xr ] × (−∞, zb], (4c)

Ätop := [0, xr ] × [zt ,∞), (4d)

with artificial horizontal boundaries

0bot := Äcomp∩Äbot, (5a)

0top := Äcomp∩Ätop. (5b)

The governing equations described in the preceding section are considered inÄcomp, and we
assume that the initial conditions for the unknown functions differ from a static background
atmosphere only inside this domain.

We prescribe periodic conditions on the vertical boundaries according to the simplifi-
cations made above. The main aim of the present study is to find boundary conditions on
0top and0bot that permit us to regard these boundaries astransparentfor waves generated
during the simulation. Assuming that strong perturbations of the background atmosphere
and strong nonlinear phenomena occur only inside the computational domain, we use a
linearization of the governing equations about the background atmosphere inÄtop andÄbot.
The desired boundary conditions on0top and0bot are obtained through a rigorous analysis
of this linear model in the far-field domainÄ\Äcomp.

FIG. 1. Computational domainÄcomp, far-field domainsÄtop, Äbot and artificial boundaries0top, 0bot.
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4. LINEARIZATION

In order to linearize (1a)–(3) inÄtop andÄbot, we split the unknown quantitiesρ, u =
(u, v, w)t ,B, andp into background values (which are assumed to depend only onz) and
perturbations:

ρ(t, x, z) = ρa(z)+ ρ̃(t, x, z),

u(t, x, z) = u
a
(z)+ ũ(t, x, z),

(6)
p(t, x, z) = p
a
(z)+ p̃(t, x, z),

B(t, x, z) = B
a
(z)+ B̃(t, x, z).

The perturbations ˜ρ, ũ, p̃, B̃ are assumed to be small (acoustic perturbations) and must not
be confused with the strong perturbations considered to be initial data inÄcomp (see the
preceding section). For the background values we assume

d

dz
p
a
(z) = g(z)ρ
a
(z), (7)

u
a
(z) = 0, B
a
(z) = 0, (8)

p
a = ρaγ , γ = const, (9)

with g(z) andγ as introduced in the governing equations (1a)–(3). Due to (7) and (9) the
function g(z) and thus all background values are uniquely determined ifρ

a
(z) andγ are

chosen. Evidently, the functionsρ
a
, u
a
,B
a
, p
a
are a static solution to (1a)–(3).

Noting that the linearization of (3) yields

p̃ = (γ − 1)ẽ, (10)

we obtain from (1a)–(3) the system of equations for the perturbations

∂t ρ̃ + ρa∂xũ+ ∂z(ρ
a
w̃) = 0, (11a)

ρ
a
∂t ũ+ ∂x p̃ = 0, (11b)

ρ
a
∂t w̃ + ∂z p̃− ρ̃g = 0, (11c)

∂t p̃+ γ p
a
(∂xũ+ ∂zw̃)+ ρagw̃ = 0 (11d)

and

∂t ṽ ≡ 0, (12a)

∂t B̃ ≡ 0. (12b)

We see that under the assumptions of (7) and (8) the linear MHD equations are reduced to
Eq. (12a) and (12b) and the system (11a)–(11d) for the gasdynamic unknowns ˜ρ, ũ, w̃, p̃.
Equations (12a) and (12b) can already be used as boundary conditions for ˜v andB̃ on0top

and0bot; therefore we have to analyze only the system (11a)–(11d).
For the derivation of the transparent boundary conditions we fix the following initial and

boundary conditions for (11a)–(11d) in the far field:
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• homogeneous initial data

ρ̃, ũ, w̃, p̃|t=0 = 0 inÄtop andÄbot, (13)

• boundedness of pressure perturbations at infinity

| p̃| <∞ at z= +∞, (14a)

| p̃| <∞ at z= −∞, (14b)

• conditions of periodicity on the vertical boundaries ofÄ.

5. EQUATION FOR THE PRESSURE PERTURBATION p̃

To provide the desired analysis, we pass from system (11a)–(11d) to a scalar equation.
From (11a) and (11d) we have

∂t p̃− γ p
a
ρ
a ∂t ρ̃ + w̃

(
ρ
a
g− γ p
a
ρ
a ∂zρ
a) = 0.

The Eq. (7) and (9) give us

∂zρ
a = ρ
a

γ p
a ρag;

hence

∂t p̃− γ p
a
ρ
a ∂t ρ̃ = 0. (15)

Using (13), we obtain from (15) that

p̃ = γ p
a
ρ
a ρ̃. (16)

Differentiating (11b) and (11d) w.r.t.x andt , respectively, we have

∂2
t t p̃+ γ p
a
∂2

ztw̃ − γ
p
a
ρ
a ∂2

xx p̃+ ρag∂t w̃ = 0. (17)

To exclude∂2
ztw̃, ∂t w̃ from (17), we use (11c); then

∂2
t t p̃+ γ p
a(
∂z

(
gρ̃

ρ
a )− ∂z

(
∂z p̃

ρ
a ))− γ p
a

ρ
a ∂2

xx p̃+ g(gρ̃ − ∂z p̃) = 0.

Relationship (16) permits us to exclude ˜ρ from this equation. Finally we have the following
equation forp̃:

∂2
t t p̃− γ p
a

ρ
a (∂2

zzp̃+ ∂2
xx p̃
)+ g∂z p̃+

(
∂zg− γ − 1

γ
g2ρ
a
p
a) p̃ = 0. (18)
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It is convenient to introduce the function

q(z) := γ

γ − 1
ρ
a
(z)γ−1 (19)

and the constant

ϑ := (γ − 1)−1.

Then, because of (7) and (9), the coefficients of (18) are expressed in terms ofq; in particular,

g(z) = q′(z). (20)

Thus Eq. (18) takes the form

∂2
t t p̃− ϑ−1q

(
∂2

zzp̃+ ∂2
xx p̃
)+ q′∂z p̃+ q

(
q′

q

)′
p̃ = 0. (21)

Note the following expression for the speed of soundc
a ≡ √γ p
a
/ρ
a

in the background
atmosphere:c
a
(z) = √q(z)/ϑ .

To find the general solution to (21), we have to specify the functionq(z), which also
serves to define the background values (7)–(9) used for the system (11a)–(11d) except
for the constantγ . In the following we provide our analysis for the particular case of an
exponentially decaying atmosphere:

ASSUMPTION5.1. Let q(z) be of the form

q(z) = a−1e−2αz, (22)

where a> 0, α > 0 are some constants.

It is easy to see from (9) and (19) that (22) describes an exponential law for the background
pressure and density, which are uniquely defined ifa, α, andγ are chosen. In particular
we find

c
a
(z) = e−αz/

√
aϑ. (23)

Remark. The special choice ofq permits us to advance far enough with purely analytical
methods to obtain exact boundary conditions. (This seems to be impossible in the general
case.) At the same time, such a choice is not exotic: On the one hand, an exponential
atmosphere is a suitable model in several physical situations (see [8, 20]). On the other
hand, it is possible to use a different background atmosphere, e.g., governed by a power
law, insideÄcomp with a smooth transition to exponential atmospheres inÄtop andÄbot.
(Note that we can use different exponential atmospheres in the two far-field domains.) We
will address this topic in a forthcoming paper.

6. BOUNDARY CONDITIONS FOR p̃ ON Γtop

Using Fourier transformation w.r.t.x—see (40a)—we pass from (21) to equations for the
harmonicsp̃λ(t, z) with a corresponding eigenvalueλ:

∂2
t t p̃λ − ϑ−1q

(
∂2

zzp̃
λ − λ2 p̃λ

)+ q′∂z p̃λ + q

(
q′

q

)′
p̃λ = 0. (24)
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The Laplace transformatioñpλ(t, z) 7→ p̂λ(z) reduces (24) to an ordinary differential equa-
tion with parameters ∈ [0,∞) (the hat ˆ denotes the dependency ons):

s2 p̂λ − ϑ−1q
(
∂2

zzp̂
λ − λ2 p̂λ

)+ q′∂z p̂λ + q

(
q′

q

)′
p̂λ = 0. (25)

Substituting (22) forq in (25), we have

∂2
zzp̂

λ + 2αϑ∂z p̂λ − (λ2+ as2ϑe2αz) p̂λ = 0. (26)

This equation is reduced to the modified Bessel equation,

y2 f ′′ + y f ′ − (y2+ ν2) f = 0 (27)

by the substitutions

p̂λ(z) = eδz f (beβz), y = beβz,

δ = −αϑ, β = α, b = s

α

√
aϑ,

ν2 =
(
λ

α

)2

+ ϑ2.

Because of (14a), the desired solution to (27) is the Macdonald functionKν(σ ) that decays
asσ →∞ (see [2]). Therefore, the general solution to (26) has the form

p̂λ(z) = Ce−αϑzKν(α
−1
√

aϑeazs), (28)

whereC is an arbitrary constant. To exclude this constant, we calculate the derivatived
dz p̂λ

from (28) and obtain the relationship

d

dz
p̂λ(z) = −B̂λtop(s, z) p̂

λ(z) at z= zt , (29)

where

B̂λtop(s, z) := αϑ −
√

aϑeαzs
K ′ν(α

−1
√

aϑeazs)

Kν(α−1
√

aϑeαzs)
. (30)

Now we extract those terms from (30) that do not decay ass→∞ . If we introduce the
function

Âλtop(s, z) := α−1
√

aϑeαzs

(
K ′ν(α

−1
√

aϑeαzs)

Kν(α−1
√

aϑeαzs)
+ 1+ 1

2α−1
√

aϑeαzs

)
, (31)

(30) is equivalent to

B̂λtop(s, z) =
√

aϑeαzs+ αϑ + α
2
− α Âλtop(s, z). (32)
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Because of the identity

K ′ν(σ ) = −Kν+1(σ )+ νKν(σ )

σ
, (33)

we may rewrite (31) as

Âλtop(s, z) = Âνtop(σ ) := −σ Kν+1(σ )

Kν(σ )
+ ν + σ + 1

2
(34)

with

σ := α−1
√

aϑeαzs. (35)

Using asymptotic properties ofKν(σ ) for largeσ , we have

−K ′ν(σ )
Kν(σ )

= 1+ 1

2σ
+ O

(
1

σ 2

)
(see [2]). Thus (31) decays to 0 ass→∞. We denote byAλtop(t, z) the inverse Laplace

transformation ofÂλtop(s, z):

Aλtop(t, z) := L−1
[
Âνtop(σ )

]
(τ ) with τ := tα/(

√
aϑeαz). (36)

To show thatAλtop(t, z) exists, we have to consider analytical properties ofÂνtop(σ ). The
zerosσ j of Kν(σ ) have negative real parts

Reσ j < σν < 0 (37)

(see [2]). ThereforeÂνtop(σ ) is analytical for Reσ ≥ σν . Since

Âνtop(σ ) = −
4ν2− 1

8

1

σ
+ O

(
1

σ 2

)
,

the conditions for the existence of the inverse Laplace transformation (36) are satisfied,
(see, e.g., [22]); moreover, we have the estimate

L−1
[
Âνtop(σ )

]
(τ ) = O(eσντ )→ 0 asτ →∞. (38)

Now we can use (36) to obtain from (29) and (32) the equation atz= zt for each Fourier
coefficient p̃λ(t, z)

√
aϑeαz∂t p̃λ + ∂z p̃λ +

(
αϑ + α

2

)
p̃λ − α2

√
aϑ

e−αz
∫ t

0
Aλtop(t − t ′, z) p̃λ(t ′, z) dt′ = 0,

or in a more convenient form (taking (23) into account)

∂t p̃λ + c
a
∂z p̃λ +

(
αϑ + α

2

)
c
a
p̃λ − α2c
a2Aλtop ∗ p̃λ = 0. (39)
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Denote byQ and Q−1 the operators of direct and inverse Fourier transformation w.r.t.x,
respectively; i.e.,

f λk := (Q f )(λk) := 1

xr

∫ xr

0
eiλkx f (x) dx, k = 0,±1,±2, . . . , (40a)

f (x) := (Q−1
{(

f λk
)

k∈Z
})
(x) :=

∞∑
k=−∞

f λke−iλkx, λk = 2π

xr
k, (40b)

wherexr is the width of the well (see Fig. 1). Then the set of conditions (39) for different
values ofλ can be written in physical space as follows:

∂t p̃+ c
a
∂z p̃+

(
αϑ + α

2

)
c
a
p̃− α2c
a 2Q−1

{
Aλk

top∗
}

Qp̃ = 0 atz= zt . (41)

The notation{Aλk
top∗} is used to stress that the convolution kernel for each Fourier coefficient

f λk depends onλk. This is the desired nonreflecting condition for (21) on0top. We shall not
prove this statement here since our goal is to analyze the system (11a)–(11d), not the scalar
equation (21); nevertheless, some test calculations for (41) are contained in Section 10.

7. BOUNDARY CONDITIONS FOR (11a)–(11d) ONΓtop

Using (11c) we exclude the derivative w.r.t.z from (41). Thus the desired nonreflecting
condition for (11a)–(11d) atz= zt has the form

∂t p̃− c
a
ρ
a
∂t w̃ +

(
αϑ + α

2

)
c
a
p̃+ c
a
gρ̃ − α2c
a 2Q−1

{
Aλk

top∗
}

Qp̃ = 0. (42)

In order to prove this, let us consider the following two linear problems for the vector of
unknownsṼ = (ρ̃, ũ, w̃, p̃) in (11a)–(11d) and a given functioñV0 with suppṼ0 ⊂ Äcomp:
Equations (11a)–(11d) in the infinite domainÄ with

• the initial conditionsṼ0 =
{

0 inÄtop∪Äbot

Ṽ0 in Äcomp
and (A)

• the boundary conditions|Ṽ| <∞ for z→±∞;

Equations (11a)–(11d) inÄ\Ätop with

• the initial conditionsṼ0 =
{

0 inÄbot

Ṽ0 in Äcomp
and (B)

• the boundary conditions

{ |Ṽ| <∞ for z→−∞
(42) on0top

.

For both problems the parametersp
a
, p
a
, andg in (11a)–(11d) are defined through the back-

ground atmosphere (7)–(9) using (19) withq according to (22). The vertical boundaries are
assumed to be periodic.

THEOREM7.1.

1. Any solution to problem(A) is a solution to problem(B).
2. Let us consider a solution to problem(B), which is continuously differentiable up to

0top. Then it is possible to prolong it intoÄtop to obtain a solution to problem(A).
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Proof. The first statement is evident since we derived (42) from the representation of
a general solution to (11a)–(11d); i.e., (42) is valid for functions which satisfy (11a)–
(11d). Let us prove the second statement. First we write out the prolongation formulae. Let
Ṽ = (ρ̃, ũ, ṽ, p̃) be a solution to problem (B). We fix a timet , denote byp0top(t, x) the
trace of p̃ on0top, and calculate its imagêpλ0top

(s) := LQp0top. From (28) we find that

p̂λ(s, z) = p̂λ0top
(s)e−αϑ(z−zt )

Kν(α
−1
√

aϑeαzs)

Kν(α−1
√

aϑeαzt s)
, z> zt . (43)

BecauseKν(Cσ)/Kν(σ ) ∼ e(1−C)σ and we haveC > 1 in (43), the inverse Laplace trans-
formation of p̂λ(s, z) exists. Therefore, calculating the inverse Laplace and Fourier trans-
formations of p̂λ(s, z) in (43), we obtain the functioñp(t, x, z) in Ätop. The remaining
functions inÄtop are expressed in terms ofp̃(t, x, z) by using (11b), (11c), (13), and (16):

ũ = −1

ρ
a ∫ t

0
∂x p̃ dt, (44)

w̃ = −1

ρ
a ∫ t

0
∂z p̃− gρ̃ dt, (45)

ρ̃ = ρ
a

γ p
a p̃. (46)

We have to prove that our functions̃p, ũ, w̃, ρ̃ satisfy (11a)–(11d) inÄtop. Formulae (44)
and (45) immediately give (11b) and (11c). Let us prove (11d). A direct calculation using
(44)–(46), (18) yields

∂t p̃+ γ p
a
(∂xũ+ ∂zw̃)+ ρagw̃

= ∂t p̃− γ p
a

ρ
a ∫ t

0
∂2

xx p̃+ ∂2
zzp̃− ∂z(gρ̃) dt + γ p

a ∂z p
a

p
a 2
∫ t

0
(∂z p̃− gρ̃) dt + ρagw̃

= ∂t p̃−
∫ t

0
∂2

t t p̃+ g∂z p̃+
(
∂zg− γ − 1

γ
g2ρ
a
p
a) p̃ dt+ γ p
a

ρ
a ∫ t

0
∂z(gρ̃) dt

+ g
∫ t

0
∂z p̃− gρ̃ + ρa∂t w̃ dt

=
∫ t

0

γ p
a

ρ
a ∂z(gρ̃)− g∂z p̃− p̃∂zg+ γ − 1

γ
g2ρ
a
p
a p̃ dt

= 0.

A similar direct calculation proves (11a). Thus it follows that (11a)–(11d) are valid in
Ä\Ätop andÄtop; it remains to be proved that they are valid on0top, i.e., atz= zt . Since
p̃ is continuously differentiable atz= zt , the derivative∂t ũ calculated by (11b) from the
upper and lower side of0top has the same value; therefore (11b) is valid atz= zt . We see
thatũ is continuous w.r.t.z atz= zt ; the function ˜ρ is also continuous (see (46)); therefore
(11a) is valid atz= zt . Using (11c) and (42) inÄ\Ätop, we pass to (41) and calculate∂z p̃ on
0top from the lower side. On the other hand, since (41) is valid forp̃ defined by (43) inÄtop,
we can calculate∂z p̃ from the upper side by using (41) as well. Becausep̃ is continuously
differentiable on0top, both values of∂z p̃ are the same; i.e.,∂z p̃ is continuous atz= zt .
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Hence (11c) is valid on0top. This yields the continuity of ˜w w.r.t. z at z= zt . Therefore
(11d) is also valid atz= zt . j

This theorem allows us to use the condition (42) on0top and to solve the governing
equations just inÄ\Ätop instead of in the whole domainÄ. Although (42) is obtained from
the linear analysis, we use it to close the nonlinear equations (1a)–(1d) inÄ\Ätop. We arrive
at a complete set of equations on0top if we add (11b), (16) and (11c):

ρ
a
∂t ũ+ ∂x p̃ = 0, (47)

ρ̃ − c
a−2 p̃ = 0, (48)

ρ
a
∂t w̃ + ∂z p̃− ρ̃g = 0. (49)

Here we used the speed of soundc
a
as introduced in Section 5.

8. THE BOTTOM BOUNDARY

For the bottom domainÄbot we have the same equation (26), but now the general solution
is given by

p̂λ(z) = Ce−αϑzIν(α
−1
√

aϑeαzs), ν2 =
(
λ

α

)2

+ ϑ2. (50)

We use the Bessel functionsIν(σ ) because of their asymptotic behavior for smallσ ,

Iν(σ ) ∼ σν asσ → 0,

which yields

p̂λ(z) ∼ eα(ν−ϑ)z <∞ asz→−∞.

Thus (14b) is satisfied.
By formally making a similar analysis as in Section 7, we obtain the following boundary

condition for (21) on0bot:

∂t p̃− c
a
∂z p̃−

(
αϑ + α

2

)
c
a
p̃+ α2c
a 2Q−1

{
Aλk

bot∗
}

Qp̃ = 0 atz= zb. (51)

Here we have used

Aλbot(t, z) := L−1
[
Âνbot(·)

]
(τ 7→ tαc
a
(z)) (52)

and (cf. (34))

Âνbot(σ ) := σ Iν+1(σ )

Iν(σ )
+ ν − σ + 1

2
= σ I ′ν(σ )

Iν(σ )
− σ + 1

2
. (53)

Now we have to check whether the inverse Laplace transformation (52) exists. Forµ :=
4ν2 the functionIν(σ ) has the asymptotic expansion

Iν(σ ) ∼ eσ√
2πσ

(
1− µ− 1

8σ
+ (µ− 1)(µ− 9)

2!(8σ)2
− (µ− 1)(µ− 9)(µ− 25)

3!(8σ)3
+ · · ·

)
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as|σ | → ∞ (see [2]). Substituting this expression into (53), we get (using MAPLE)

Âνbot(σ ) ∼ (4ν2− 1)

(
1

8

1

σ
+ 1

8

1

σ 2
+ · · · + n!

2n
pn(ν)

1

σ n
+ · · ·

)
asσ →∞,

wherepn(ν) are polynomials of order less thann with bounded coefficients w.r.t.n.
Using the property of correspondence between asymptotic expansions of a functionf (τ )

asτ → 0 and its Laplace transformationL[ f ](σ ) asσ →∞ (see, e.g., [12]), we find that
the function formally defined in (52) has the asymptotic expansion

Aνbot(τ ) ∼ (4ν2− 1)

(
1

8
+ 1

8
τ + · · · + n

2
pn(ν)

(τ
2

)n−1
+ · · ·

)
(54)

asτ → 0. This series converges within the finite interval 0≤ τ < 2. Therefore, we can
expect the existence of (52) only up to a finite time. To our knowledge, the current theory
of Laplace transformation does not give an answer to the question of whether or not (52)
actually exists.

Remark. For τ ≥ 2 we have to expect terms with generalized functions in (52). This is
because the function (53) has an infinite number of purely imaginary poles with absolute
values equal to the zeros of the Bessel functionJν(σ ) according toIν(σ ) = i−ν Jν(iσ).

In order to understand the physical reason that an upper limitation with respect to time
appears, let us analyze (24) inÄbot by using the theory of characteristics. Equation (24) is
a hyperbolic equation with characteristics defined by

dz±

dt
= ±c
a
(z±) = ±e−az±/

√
aϑ, (55)

where the local speed of soundc
a
is given by (23). Thereforec

a
(z)→∞ asz→−∞. By

integrating (55) for the characteristic going to−∞ starting at the location of the bottom
boundaryzb, we obtain

z−(t) = zb + α−1 ln(1− αc
a
(zb)t). (56)

Thus a signal starting fromz= zb arrives at−∞ after the finite time

tb = 1

αc
a
(zb)

. (57)

This value corresponds to the non-dimensional timeτ = 1 (see (52)). If we also take into
account the time which a signal reflected at−∞ needs to return toz= zb, we have to
multiply this value by 2. Hence we obtain the same upper boundτ = 2 as in (54).

Remark. The problems we encounter during the derivation of our boundary conditions
on0bot are caused by the fact that the exponential atmosphere (22) used inÄbot is unbounded
asz→−∞. However, we have refrained from using another model of the atmosphere since
we want to remain in the framework developed for the top boundary. Note that even if the
analysis is only valid up to a finite time, the approximation proposed in Section 9 works
well even for far larger times, as the examples in Section 10 demonstrate.
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Assuming the existence of (54), we continue our analysis for obtaining transparent bound-
ary conditions on0bot and get from (51) and (11c)

∂t p̃+ c
a
ρ
a
∂t w̃ −

(
αϑ + α

2

)
c
a
p̃− c
a
gρ̃ + α2c
a 2Q−1

{
Aλk

bot∗
}

Qp̃ = 0. (58)

The additional equations for the remaining functions are (cf. (47)–(49)):

ρ
a
∂t ũ+ ∂x p̃ = 0, (59)

ρ̃ − c
a−2 p̃ = 0, (60)

ρ
a
∂t w̃ + ∂z p̃− ρ̃g = 0. (61)

The statement that (58) is the desired boundary condition is formulated and proved quite
similar to Theorem 7.1; one has to stress that the solutions are considered only within a
finite time interval.

9. NUMERICAL IMPLEMENTATION

Both Eqs. (41) and (51) contain the non-local operators of Fourier transformation and
convolution with respect to time. Computationally, the Fourier transformation is not too
expensive, since we can use FFT algorithms. Because it suffices to treat only the first few
Fourier harmonics by (41) and (51), we can even rely on simple discrete counterparts to (40a)
and (40b). For the remaining shortwave harmonics, the non-local terms in these equations
can be omitted because of their smaller contribution to the whole solution (cf. discussion
in [29]). Computational resources are mainly required for the operatorsAλtop and Aλbot of
convolution with respect to time. To reduce the costs, we explore the following approach:
at first we approximate the convolution kernels by sums of exponentials; thereafter the
recurrence formula for convolution integrals with exponential kernels is used:

I (t) :=
∫ t

0
eβ(t−t ′) f (t ′) dt′ = eβτ I (t − τ)+

∫ t

t−τ
eβ(t−t ′) f (t ′) dt′.

Due to this approach, the computational resources required by (42) and (58) are quite
reasonable with respect to both computational time and storage.

9.1. Approximation of the Convolution Kernels

The approximation of the convolution kernels by exponential sums is made numerically.
First we approximate the functionŝAνtop(σ ) in (34) andÂνbot(σ ) in (53) by rational functions

Âνn(σ ) := Pn(σ )

Qn+1(σ )
, (62)

wherePn(σ ), Qn+1(σ ) are polynomials of degreesn andn+ 1, respectively. (The value
of n depends on the accuracy we need.) This approximation is made in advance by using
the MAPLE package. We apply the Chebyshev–Pad´e algorithm, which consists of three
consecutive stages:
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1. approximate representation by Chebyshev polynomials:

Âνn(σ ) ≈ a0+
N(n)∑
k=1

akTk(σ );

2. application of the Pad´e algorithm to obtain the coefficients of a rational approximation:

a0+
N(n)∑
k=1

akσ
k ≈ b0+

∑n
k=1 bkσ

k

c0+
∑n+1

k=1 ckσ k
;

3. use of the Pad´e coefficients with the Chebyshev polynomials:

Âνn(σ ) ≈
b0+

∑n
k=1 bkTk(σ )

c0+
∑n+1

k=1 ckTk(σ )
=:

Pn(σ )

Qn+1(σ )
.

An example of such a code forλ1 is given in the Appendix. The inverse Laplace transfor-
mation of (62) turns out to be a sum of exponentials. Letβ1, . . . , βn+1 be the complex zeros
of Qn+1. Then we have

Qn+1(σ ) =
n+1∏
k=1

(σ − βk). (63)

Since

Q′n+1(σ ) =
n+1∑
l=1

∏
k 6=l

(σ − βk), (64)

we get

Q′n+1(β j ) =
∏
k 6= j

(β j − βk) ∀ j ∈ {1, . . . ,n+ 1}. (65)

Now assume thatβ1, . . . , βn+1 are pairwise distinct. Then we may define

bj := Pn(β j )

Q′n+1(β j )
∀ j ∈ {1, . . . ,n+ 1} (66)

and we find

n+1∑
j=1

bj

σ − β j
= 1

Qn+1(σ )

n+1∑
j=1

 Pn(β j )

Q′n+1(β j )

∏
k 6= j

(σ − βk)


(65)= 1

Qn+1(σ )

n+1∑
j=1

Pn(β j )
∏
k 6= j

σ − βk

β j − βk


=:

Rn(σ )

Qn+1(σ )
.
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SinceRn has degreen,

Rn(β j ) = Pn(β j ) ∀ j ∈ {1, . . . ,n+ 1}

and|{β1, . . . , βn+1}| = n+ 1, we haveRn ≡ Pn. With (62) this yields

Âνn(σ ) =
n+1∑
j=1

bj

σ − β j
. (67)

Because the inverse Laplace transformationL−1 is linear and fulfils

L−1

[
1

σ − β
]
(τ ) = eβτ , (68)

we end up with

Aλ ≈ Aλn := L−1
[
Âνn(·)

]
(τ 7→ αc
a
t) =

n+1∑
j=1

bj e
αc
a
β j t . (69)

If we use this approximation for the kernelÂλtop, we obtain convergence for increasingn
in numerical experiments. For instance, Fig. 2 (left) showsAν16(τ ) with ν = 15.78 and the
deviation from the approximation withn = 8. This is the typical situation we observed
within our computations for any value ofν.

However, for the bottom boundary the situation is quite different. Figure 2 (right) shows
the approximations of the “bottom” kernel with the sameν = 15.78 calculated forn =
8, 12, 16. There is no convergence; moreover, several values ofβ j in (69) have positive real
parts, which lead to divergence of the convolution integral. The reason for this behavior is
clear from the analysis made in Section 8: the kernelÂλbot can be represented by a function
only up to a finite time. (It is interesting to note that the graphs in Fig. 2 confirm this fact:
they match each other in an initial finite interval.)

On the other hand, there is no restriction on the simulation time imposed by the top bound-
ary. Evidently, the difficulty with the bottom boundary occurs because of the admission of

FIG. 2. ν = 15.78. Top boundary (left): kernelAν16(τ ) (solid line), and the differenceAν16(τ )−Aν8(τ ) mul-
tiplied by 1010 (dotted line). Bottom boundary (right): kernelsAν8(τ ) (solid line),Aν12(τ ) (dotted line) andAν16(τ )

(dashed line).
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nonphysical background functions which are unbounded asz→−∞. One possibility for
overcoming this problem would be to change the law (22) in the vicinity ofz= −∞ (e.g.,
by puttingα = 0 for large|z|, z< 0). We propose another approach which permits us to
remain in the framework of the method developed: we add the requirement that admissible
exponential approximations toAλbot have to beboundedfor 0≤ t <∞. This means that
we have to find a representation of the form (69) which approximates the “bottom” kernel
along the initial time interval and which has noβ j with positive real parts (in order to
keep the convolution integral stable in long-time simulations). We implement the following
procedure to do this. Let us consider the functionI ′ν(σ )/Iν(σ ) in the complex plane. Since
Iν(σ ) = i−ν Jν(iσ), the corresponding residues are easily computed:

Res
I ′ν(σ )
Iν(σ )

= 1 atσ = ±iak
ν , whereJν

(
ak
ν

) = 0, k = 1, 2, . . . .

We fix an integer numberM ≥ 1 and form the rational function

RνM(σ ) := 2
M∑

k=1

(
ak
ν

)2

σ 2+ (ak
ν

)2 ,

wherebya1
ν , . . . ,a

M
ν ∈ R are the firstM positive roots ofJν . Hence the auxiliary function

(
Âνbot

)
M

:= Âνbot+RνM

has no poles in the circle{ζ ∈ C ||ζ | < aM
ν }. As soon as we have constructed a representation

of type (69) with Reβ j ≤ 0 for(Âνbot)M , the corresponding approximation toAνbot is obtained
by simply subtracting the term

L−1
[
RνM

]
(τ ) = 2

M∑
k=1

ak
ν sin

(
ak
ν τ
) = M∑

k=1

(
iak
νe
−iak

ν τ − iak
νe

iak
ν τ
)
,

which is evidently bounded for 0≤ τ <∞. Therefore, the approximation toAνbot is of the
form (69) with bounded coefficients. Note that although the Laplace transformation is linear,
this trick has an effect because the numerical procedure of computing{bj , β j } is nonlinear.
Without our modification, we obtained bounded approximations ofAνbot only for very small
values ofn; n could not be chosen large enough to yield sufficiently transparent and stable
boundary conditions. Our modification enables us to compute bounded approximations for
an arbitrary value ofn if M ≈ n. (For small values ofλ we had to chooseM slightly larger
thann.) These approximations lead to boundary conditions which are transparent and stable
even in long-time simulations.

9.2. Discretization of Transparent Boundary Conditions

All boundary conditions (41), (47)–(49), (51), (59)–(61) are discretized in a similar
manner. As an example, we consider Eq. (41), concentrating on one of the Fourier modes
governed by (39). Let{bj , β j } be the corresponding coefficients of the representation (69)
for the kernelAλtop with a givenλ. Substituting it in (39) and omitting ˜ andλ in the notation,
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FIG. 3. Mesh for discretization.

we arrive at the equation

∂t p+ c
a
∂z p+ c
a(
αϑ + α

2

)
p− α2c
a 2 ∫ t

0

n+1∑
j=1

bj e
αc
a
β j (t−t ′)p(t ′, z) dt′ = 0. (70)

We discretize (70) on a grid stencil as sketched in Fig. 3 in the following manner:

• pit ,i z denotes the discrete value ofp at the grid point(t i t , ziz).
• The points at positionz0 are the last ones within the computational domain; those at

z1 are “ghost points.”
• The “half” time and space levels are defined as usual:

t1/2 := 1

2
(t0+ t1), t−1/2 := 1

2
(t−1+ t0), z1/2 := 1

2
(z0+ z1).

(Note that the boundary0top is located atzt = z1/2.)

• We assume that the values within the computational domain are given (updated) up to
time t1, while the “ghost values” are known up tot0 (including p−1/2,1/2).
• To obtainp1,1, we discretize (70) using central differences around(t1/2, z1/2).

For the discretization of (70) we set1t1/2 := t1− t0,1z := z1− z0 and choose the ap-
proximations

∂t p
(
t1/2, z1/2

) ≈ 1

1t1/2

(
p1,1/2− p0,1/2

) ≈ 1

21t1/2
(p1,0+ p1,1− p0,0− p0,1), (71a)

∂z p
(
t1/2, z1/2

) ≈ 1

1z

(
p1/2,1− p1/2,0

) ≈ 1

21z
(p0,1+ p1,1− p0,0− p1,0), (71b)

p1/2,1/2 := 1

2
(p0,1+ p1,0), (71c)

p0,1/2 := 1

2
(p0,0+ p0,1). (71d)

To handle the convolution term in (70), we define1t0 := t1/2− t−1/2, p(t) := p(t, z1/2),

c
a
:= c
a
(z1/2) and compute the integral
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∫ t1/2

0

n+1∑
j=1

bj e
αc
a
β j (t1/2−t ′)p(t ′) dt′ =

n+1∑
j=1

bj

(∫ t1/2

0
eαc
a
β j (t1/2−t ′)p(t ′) dt′

)

=
n+1∑
j=1

bj

(∫ t−1/2

0
eαc
a
β j (t1/2−t ′)p(t ′) dt′ +

∫ t1/2

t−1/2
eαc
a
β j (t1/2−t ′)p(t ′) dt′

)
(72)

=
n+1∑
j=1

bj

(
eαc
a
β j1t0

∫ t−1/2

0
eαc
a
β j (t−1/2−t ′)p(t ′) dt′ +

∫ 1t0

0
eαc
a
β j (1t0−t ′)p(t−1/2+ t ′) dt′

)
.

If the grid is uniform in time, i.e.,1t1/2 = 1t0 =: 1t , we can use the Simpson formula for
the approximation of the second integral,∫ 1t

0
eαc
a
β j (1t−t ′)p

(
t−1/2+ t ′

)
dt′

≈ 1t

6

(
eαc
a
β j1t p−1/2,1/2+ 4eαc

a
β j1t/2 p0,1/2+ p1/2,1/2

)
. (73)

In the case of a non-uniform grid with respect to time we apply a quadrature formula to the
quadratic interpolation ofp−1/2,1/2, p0,1/2, andp1/2,1/2. From the calculations up tot0 we
already know an approximation of the first integral on the r.h.s. of (72),

A−1/2
j ≈

∫ t−1/2

0
eαc
a
β j (t−1/2−t ′)p(t ′) dt′. (74)

Based on (72) we define the recurrence rule

A1/2
j := eαc
a
β j1t A−1/2

j + 1t

6

(
eαc
a
β j1t p−1/2,1/2+ 4eαc

a
β j1t/2 p0,1/2+ p1/2,1/2

)
, (75)

A−1/2
j := A1/2

j .

Thus we get from (72)–(75)∫ t1/2

0

n+1∑
j=1

bj e
αc
a
β j (t1/2−t ′)p(t ′, z) dt′ ≈

n+1∑
j=1

bj A1/2
j . (76)

Note that the error in the approximation (76) occurs only because of (73); the recurrence
rule (75) is stable due to nonpositive real parts of the coefficientsβ j .

Combining (70), (71a)–(71d) and (76) we obtain

p1,1 ≈
(

1

21t
(p0,0+ p0,1− p1,0)+ c

a
21z

(p0,0+ p1,0− p0,1)

(77)

− c
a

2

(
αϑ + α

2

)
(p0,1+ p1,0)+ α2c

a 2 n+1∑
j=1

bj A1/2
j

)/(
1

21t
+ c
a

21z

)
.

We see from (77) that the computational costs of defining the boundary valuep1,1 are
proportional to the number of terms in the sum (69). An analysis of the examples from
Fig. 4 and Table I in the next section shows that a highly accurate representation of the form
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FIG. 4. Convergence rates forλ1 att = 20 (left) andλ9 att = 100 (right) with transparent boundary conditions
on0bot and0top.

(69) can be achieved for comparably small values ofn. (The approximation error in (69) is
the second source of a residue in discretizing (39); this error is hidden in our analysis since
we treated (70) instead of (39).) Note that estimates of the approximation (69) for the case
of the wave equation with a constant speed of sound are contained in [3].

TABLE I

Errors and Convergence Rates

λ1, t = 20 : Transparent boundary conditions on0bot and0top

Local n = 4 n = 8 n = 16

h Error eoc Error eoc Error eoc Error eoc

0.025000 0.171451 0.000346 0.000289 0.000289
0.012500 0.172893 −0.01 0.000365 −0.08 0.000072 2.00 0.000072 2.00
0.006250 0.173592 −0.01 0.000369 −0.02 0.000021 1.79 0.000018 2.00
0.003125 0.174226 −0.01 0.000370 −0.00 0.000020 0.06 0.000005 2.00
0.001563 0.174542 −0.00 0.000370 −0.00 0.000020 0.02 0.000001 2.00

n = 16, t = 100 : Transparent boundary conditions on0bot and0top

λ0 λ1 λ2 λ3

h Error eoc Error eoc Error eoc Error eoc

0.025000 0.000936 0.001475 0.003716 0.008199
0.012500 0.000231 2.02 0.000357 2.05 0.000918 2.02 0.002013 2.03
0.006250 0.000061 1.91 0.000089 2.01 0.000230 2.00 0.000504 2.00
0.003125 0.000016 1.96 0.000023 1.97 0.000057 2.00 0.000127 1.99
0.001563 0.000004 1.95 0.000006 1.88 0.000014 2.00 0.000032 2.00

λ9, t = 100 : Transparent boundary conditions on0bot and0top

Local n = 4 n = 8 n = 16

h Error eoc Error eoc Error eoc Error eoc

0.012500 0.056404 0.020772 0.020896 0.020896
0.006250 0.066722 −0.24 0.004484 2.21 0.004604 2.18 0.004605 2.18
0.003125 0.068933 −0.05 0.001020 2.14 0.001130 2.03 0.001131 2.03
0.001563 0.071974 −0.06 0.000303 1.75 0.000280 2.01 0.000281 2.01
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10. NUMERICAL TESTS

10.1. Linear Problem for Single Fourier Harmonics

For our first numerical tests we discretize (24) and compare the numerical solution
obtained with our transparent boundary conditions (77) to a reference solution computed
in a large domain for different values ofλ. From (22) we have

q′(z) = −2αq(z) = −2αϑc
a 2, (q′

q

)′
≡ 0. (78)

Therefore (24) reads

∂2
t t p̃λ − c
a 2∂2

zzp̃
λ − 2αϑc
a 2∂z p̃λ + λ2c
a 2 p̃λ = 0. (79)

Using standard second order finite differences we get an explicit scheme forp̃λ. We use the
impulse

p̃λ(0, z) = p̃λ0(z) :=
{

e
− 4(z−5)2

1−(z−5)2 (z ∈ [4, 6])

0 (z ∈ R\[4, 6])
(80)

and∂t p̃λ(0, ·) ≡ 0 as initial conditions for our calculations. The parameters for the back-
ground solution are set toa := 2.0, α := 0.4, andγ := 5/3. As a computational domain
we useÄcomp= [4, 6]. Thus the artificial boundaries0bot and0top are located atzb = 4 and
zt = 6, respectively.

One of our main concerns is to perform stable and accurate long-time computations.
However, the boundary condition on0bot is a potential source of difficulty: According
to the analysis in Section 8, the proposed transparent boundary condition (51) has no
theoretical justification outside the initial time interval. From (57) we estimate 2tb ≈ 43 as
the critical simulation time. (Note that the modification introduced in Section 9.1 guarantees
the stability of the approximation beyond this time.)

In the following we want to test the transparency of our boundary conditions numerically.
We compare results computed inÄcompusing our boundary conditions with a solution com-
puted in the larger reference domain [0, 10]. The question remaining is which boundary
conditions should be chosen for the reference domain. Using the equation for the charac-
teristics (55), we can estimate that signals fromÄcompreach the boundaries of the reference
domain att ≈ 17. Therefore, up to the simulation timet ≈ 34 no signal reflected at these
boundaries influences the reference solution inÄcomp. Thus the results shown in Figs. 5–7
are independentof the boundary conditions used for the reference domain. On the other
hand, it is also evident from Section 8 that there is no reference domain large enough to rule
out the possibility that reflected waves are generated which could influence the reference
solution inÄcomp for t > 2tb ≈ 43. In this case, we rely on a different test, which allows
us to use our boundary conditions for the computation of the solutions in the reference
domain. Indeed, transparency of a boundary condition means that the solution does not
depend on the size of the domain. In the case of a numerical simulation this holds within
an approximation error. If the difference between the solutions computed inÄcomp and in
the reference domain, using the same boundary conditions, converges to zero ash→ 0, we
can conclude that these boundary conditions are in fact transparent.
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FIG. 5. Results forλ1 at t = 20 (left) andλ9 at t = 35 (right) with h = 0.00625 and different artificial
boundary conditions;Äcomp= [4, 6].

In the following we considerλ1 andλ9 as typical examples; the results forλ0 are very
similar to those forλ1. We use the same grid spacingh for the calculations inÄcomp and
for the reference solutions. As a measure of error we use the maximal absolute value of
the difference between these two solutions at the grid points inÄcomp at a fixed time. The
experimental order of convergence (eoc) is then computed as usual. The simulation times
are chosen in such a way that noticeable disturbances pass through the boundaries ofÄcomp

(see Fig. 5).
The results in Table I and Fig. 4 show that by choosing an appropriate value ofn we

achieve the expected second order accuracy with our boundary conditions. (n refers to the
number of terms in the non-local convolution sum in (77); “local” means that this term is
omitted, which leads to boundary conditions which are comparable to characteristic-based
boundary conditions.) Forλ9 we obtain the optimal quadratic convergence (and constant
errors on a fixed grid for increasingn) for n = 8. (If we think of reasonable grid sizes for
two-dimensional simulations, evenn = 4 suffices.) By contrast, we really “need”n = 16
in the case ofλ1. In the example considered this behavior is caused by varying influences
from the bottom boundary: Forλk with small indexk (e.g.,k = 1), the amplitudes of dis-
turbances actually reaching0bot are quite large, and therefore they strongly influence the
overall errors; for larger indicesk (e.g.,k = 9) the disturbances at the bottom boundary
are almost negligible. Moreover, Table I shows that the difference between the solutions
in the computational and the reference domain is of the same order as the discretization
error if we choosen compatible with the grid spacingh. Thus we conclude that our ap-
proximation yields transparent boundary conditions in the linear case even for long-time

FIG. 6. Deviations from reference solution with Dirichlet conditions forλ1 (left) andλ9 (right) with h =
0.00625 inÄcomp= [4, 6]. Forλ9 we observe no activity forz ∈ [4, 5.4].
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FIG. 7. Deviations from reference solution with transparent boundary conditions on0bot and0top: λ1 for
n = 16 (left) andλ9 for n = 8 (right) with h = 0.00625 inÄcomp= [4, 6]. For λ9 we observe no activity for
z ∈ [4, 5.4].

simulations. Note that the simulation breaks down if we do not use the modification dis-
cussed in Section 9.1.

In Fig. 5 we compare our results with those obtained using simple Dirichlet conditions
(fixing the initial “zero disturbance” at the boundary). We see that the choice of appropriate
boundary conditions is absolutely crucial for obtaining meaningful numerical solutions in
the truncated domain. The evolution in time of the pointwise deviation from the reference
solution is shown in Figs. 6 and 7: The errors in the solution with our transparent boundary
conditions are smaller by several orders of magnitude than those obtained with Dirichlet
conditions.

The tests presented show that the second order approximation of our boundary conditions,
with a special treatment of the convolution kernels for the bottom boundary, works well for
the linear wave problem (79) with an exponential speed of sound.

10.2. One-Dimensional MHD Equations

We now study how well our boundary conditions perform in calculations with the full
nonlinear MHD equations. The transparent boundary conditions on0topand0botare given by
(41), (47)–(49) and (51), (59)–(61), respectively. First we examine the situation in one space
dimension (assuming that the solution to (1a)–(3) does not depend on the space variable
x). We discretize the MHD equations inÄcompby a first-order finite volume scheme, using
the “simple Riemann solver” developed by Dai and Woodward [9] to calculate the fluxes.
Due to the discretization errors in the finite volume scheme, our code was not capable of
retaining the static background atmosphere. This caused severe problems in our calculations.
Therefore we have added a simple fix to the finite volume algorithm, which enables our
code to keep the background atmosphere exactly static. In one space dimension, the time
evolution of the discrete solution now reads as follows:

Un+1
i := Un

i −1tG
(
Un

i−1,U
n
i ,U

n
i+1

)+1tG(U
a
i−1,U
a
i ,U
a
i+1). (81)

U is the vector of conservative variables andU
a
are the corresponding values of the back-

ground atmosphere;G describes the spatial discretization of (1a)–(1d) as in [11]. The
additional term in (81) should be equal to zero since the background atmosphere is a static
solution to (1a)–(3). Hence we have added a zero on the PDE level. Within the numeri-
cal scheme this term cancels out the errors induced by the averaging of the background
atmosphere. The boundary conditions (41), (47)–(49), (12a), and (12b) for0top and (51),
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(59)–(61), (12a), and (12b) for0bot are discretized by a second order finite difference scheme
similar to the one described in Section 9.2. The values obtained are used as ghost cell values
in the finite volume scheme.

As already noted, the background atmosphere is uniquely defined by the values ofγ >

1, α > 0,a > 0 (see Section 6). For the results shown in this section we chooseγ :=√
3, α := 0.1,a := 4.2. This results in a slower decay of the density compared to the

atmosphere used in the preceding section. In our applications we study magnetic flux tubes.
These are strong local magnetic field concentrations normal to the computational (x, z)-
plane, with an additional magnetic field tangential to the tube boundary (see Section 1 and
[27]). Characteristic properties of this setting are a lower density and a lower gas pressure
within the flux tube. The gas pressure is chosen in such a way that the total pressure (gas
pressure plus magnetic pressure) in the flux tube is balanced with the total pressure of
the surrounding atmosphere. With these initial conditions in mind, we test our transparent
boundary conditions for the setting

ρ (0, z) :=
{
ρ
a
(z+ 1.5) (z ∈ [0.2, 0.4]),

ρ
a
(z) (otherwise),

(82a)

uz(0, z) := 0.025c
a
(0.3)e−100(z−0.3)2, (82b)

Bx(0, z) :=
{

0.005z−0.3
0.1 (z ∈ [0.2, 0.4]),

0 (otherwise),
(82c)

p(0, z) := p
a
(z)− Bx(0, z)2

8π
, (82d)

and homogeneous initial conditions for all other quantities. These initial conditions lead to
a rise of the “flux tube” located at [0.2, 0.4]. Waves of small amplitude are generated which
move at a far higher speed than this density “perturbation” (see Fig. 8).

As in the preceding section we compare results computed in a small domain using
artificial boundaries with a reference solution obtained in a much larger domain (using the

FIG. 8. Reference solution: Density (top) and velocity (bottom) at timet = 0 and t = 4 calculated with
h = 0.001 in the domain [−5, 6]. Only that part of the reference domain is shown which has been influenced by
the initial perturbations inÄcomp= [0, 1]. At time t = 4 two waves here moved through the boundaries ofÄcomp,
whereas the “flux tube” has moved only slightly upward.
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same grid spacingh). We chooseÄcomp= [0, 1] and [−9, 11] as reference domain and
compare the performance of different artificial boundary conditons for the calculations in
Äcomp:

Dirichlet boundary conditions:

∂t (ρ, u,B, p)|0bot∪0top = 0. (dbc)

Neumann boundary conditions:

∂t∂z(ρ, u,B, p)|0bot∪0top = 0. (nbc)

local transparent boundary conditions:

(41) and (51) without the convolution term;
(tbc–loc)

(47)–(49) and (59)–(61).

transparent boundary conditions:

(41), (47)–(49), (51), (59)–(61). (tbc)

All four conditions are exact as long as no perturbations have reached the boundaries. We
always use identical boundary conditions on0bot and0top.

In Fig. 9 we compare solutions computed inÄcomp with solutions obtained in larger
domains using (tbc) and (dbc). We have refrained from including the (nbc) results since
they were much worse. The results with (tbc–loc) are close to the solutions computed with
(dbc) (also see Fig. 10). For our application, the position and shape of the “flux tube” is
crucial. Only our transparent boundary conditons (tbc) are capable of reproducing this part
of the solution with a high degree of accuracy (cf. Fig. 9 (left)).

In Fig. 10 we compare the solutions inÄcompat fixed timest with the reference solutions
using the sum of theL1-distances in the variablesρ(t, ·), u(t, ·),B(t, ·), andp(t, ·). For the

FIG. 9. Comparison of the solutions inÄcomp with two reference solutions computed with (dbc) and with
(tbc) usingh = 0.004. Left (t = 30): The reference solutions are indistiguishable and the solution inÄcomp with
(tbc) is very close to the reference solutions. Right (t = 50): The solution with (tbc) inÄcomp is still close to the
reference solution with (tbc). This demonstrates that our conditions are transparent even in the nonlinear case.
Both solutions with (dbc) differ significantly from the (tbc) solutions and even from each other.
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FIG. 10. The L1-norm of the difference between the reference solution and the solutions inÄcomp is shown
for different values of the grid spacingh. The reference solution and the solutions inÄcomp are calculated
using identical grid spacing. In the left figure the comparison is made at timet = 25, in the right figure at
time t = 75.

computation of the reference solution we use our boundary conditions, although one cannot
assume that they are genuinely transparent in the nonlinear case. The linearization process
results in an unavoidable error. Thus we cannot expect the solution obtained inÄcomp to
converge to the reference solution. The boundary conditions for the reference domain can
influence the reference solution inÄcomp for t > 28. Therefore, the results in Fig. 10 (left)
are independent of the conditions imposed on the boundaries of the reference domain. For
this setting of the atmosphere we compute 2tb ≈ 48. Hence fort > 48 the values inÄcompof
anyreference solution may depend on the boundary conditions. In order to check whether
the results in Fig. 10 (right)actuallydepend on these conditions, we have compared them
with the corresponding results for the reference domain [−15, 15] with both (tbc) and (dbc).
It is worth noting that we have found no differences in these cases, which does not hold if we
use (dbc) instead of (tbc) for the original reference domain [−9, 11] (see also Fig. 9 (right)).

We observe that the error induced by (tbc) is up to one order of magnitude smaller
than for any of the other approaches. Moreover, using (tbc) the error is decreased slightly
by grid refinement, whereas it grows for the other boundary conditions. Thus we can
conclude that even in the nonlinear case our boundary conditions lead to a stable and
accurate approximation of the solution inÄcomp.

10.3. Two-Dimensional MHD Equations

For our two-dimensional test calculations we use the same setting as for the one-
dimensional calculations; the only modification of (82a)–(82d) is a sinusoidalx-dependency
in the initial values foruz:

uz(0, x, z) := (cos(2π(x − 0.5))+ 1)0.025c
a
(0.3)e−100(z−0.3)2. (83)

For the computational domain we choose the unit squareÄcomp := [0, 1]× [0, 1]. The initial
disturbance in the vertical velocityuz causes the “flux tube” to rise faster in the middle of
the domain. This leads to the development of a “mushroom” shape similar to a classical
Rayleigh–Taylor instability (see Fig. 12). As in the 1D simulations two high speed waves
move upward and downward through the atmosphere; cf. Figs. 8 and 11.

We again compare the results inÄcomp using the four boundary conditions described in
the preceding section on0bot and0top with a reference solution. As reference domain we
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FIG. 11. Isolines of the vertical velocity for the 2-D problem inÄcomp with transparent boundary conditions
(left) and Dirichlet boundary conditions (right). The middle picture shows the reference solution inÄcomp. All
solutions are computed withh = 0.025. At the displayed timet = 25 the “flux tube” has not yet reached0top .
Note that small perturbations have already reached the top and bottom boundaries via acoustic waves.

take [0, 1]× [9, 11], which is 20 times larger thanÄcomp. We use a finite volume scheme
on a Cartesian grid analogous to the one described in the preceding section. The mesh is
80× 80 forÄcomp and 80× 1600 for the reference domain. Thus both grids match each
other inÄcomp. Based on our experience described in Section 10.1, we use approximations
of the convolution kernels—see (77)—withn = 14 for0bot andn = 8 for0top; we take the
non-local term only for the first 20 Fourier harmonics (see discussion at the beginning of
Section 9). Forλ0 we useM = 18, whereasM = 14 is sufficient for the remaining Fourier
modes. Since the background atmosphere is the same as in the previous example, we again
find 2tb ≈ 48. As before, att ≈ 28 waves reflected at the boundaries of the reference domain
may have reachedÄcomp.

Figure 11 shows an isoline representation of the vertical velocity att = 25. On the left
and on the right we see the solutions computed inÄcomp with (tbc) and (dbc), respec-
tively. The middle picture is the reference solution. At this moment, disturbances have
moved through the top and the bottom boundary. Note that the (tbc) result can hardly be

FIG. 12. Density plot of the solution to the 2-D problem inÄcomp with transparent boundary conditions (left)
and Dirichlet boundary conditions (right). The middle picture shows the reference solution inÄcomp. All solutions
are shown att = 35 with h = 0.025.
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FIG. 13. L1-norm of the difference between the reference solution and the solutions inÄcomp versus time for
a 2-D calculation withh = 0.025. On the left the development of errors is shown for the whole time simulated; on
the right only for the first part of the calculation using a logarithmic error axis. Note that the “flux tube” reaches
0top at t ≈ 30 (see Fig. 12).

distinguished from the reference solution. On the other hand, the (dbc) solution is noticeably
different.

In Fig. 12 (middle) the density of the reference solution is shown together with the solu-
tions inÄcompwith transparent boundary conditions (left) and Dirichlet boundary conditions
(right). At this time, the “mushroom-shaped” region with lower density has reached0top

and begins to move through the boundary. The solution obtained inÄcomp with (tbc) still
accurately reproducing the shape and position of the “mushroom,” whereas the Dirichlet
conditions lead to the wrong shape. Of the three boundary conditions (dbc, nbc, tbc–loc)
we use to verify the quality of our transparent ones, the Neumann boundary conditions
(nbc) yield by far the worst results, while the results using the other two techniques are
approximately the same. This can be seen in Fig. 13. As in our 1-D calculations, the errors
for (tbc)—up to the point where the low density region reaches0top(t ≈ 30)—are one order
of magnitude smaller than the errors produced by the other boundary conditions. Beyond
that time we still get the best solution with (tbc).

11. CONCLUSIONS

We have proposed transparent boundary conditions for problems governed by the MHD
equations with an exponential equilibrium atmosphere as background solution in the far
field. These conditions are obtained by linearizing the MHD system about the background
atmosphere. They permit the use of a truncated computational domain with artificial hori-
zontal boundaries. We have proven that these boundary conditions are exact for the linear
system of perturbations. In numerical tests for the pressure perturbation we have obtained
the expected quadratic convergence. The results for the full nonlinear MHD system in 1D
and 2D are still good: the deviations from the reference solution are up to one order of
magnitude smaller than those obtained with Dirichlet, Neumann, or characteristic-based
boundary conditions.

Although our transparent boundary conditions involve a nonlocal convolution term with
respect to time, we are able to obtain a numerical algorithm which islocal with respect
to time. Therefore, the costs for the numerical evaluation of the boundary conditions are
almost negligible: in our 2-D example it took less than 1% of the overall CPU time (see
Fig. 14).
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FIG. 14. Time used for the whole 2-D calculation inÄcomp for different grid sizes in comparison to the time
required for the calculation of the boundary values with (tbc).

The extensive tests presented show that the proposed conditions are very effective and
efficient. In a forthcoming paper we will focus on the advantage these conditions offer for
multi-dimensional applications in solar physics.

APPENDIX: EXAMPLE OF MAPLE PROGRAM

Digits := 100; degp := 16;
koef a := 2; koef alpha:= 0.4;
koef gamma:= 5/3; koef theta:= 1/(koef gamma-1);
n:=1; p lambda:=evalf(2 ∗Pi ∗n);
nu:=evalf(sqrt((p lambda/koef alpha) ˆ2+koef theta ˆ2));
an:=10 ˆdegp;
ak:= proc(s)

an∗(-s ∗BesselK(nu+1,s)/BesselK(nu,s) + n u + s + 1/2)
end;
smax:=4 ∗nu; infolevel[chebyshev]:=3;
c2:=chebyshev(ak,s=10 (̂-10)..smax, 10 (̂-2 ∗degp-1));
readlib(unassign): unassign(T);
c3:=convert(c2,ratpoly,degp,degp+1);
with(numapprox):with(orthopoly):
fa:=confracform(subs(T=orthopoly[T],c3));
nfa:=normal(fa/an);
Digits:=15;
# plot(10 ˆ(12) ∗evalf((ak(s))/an-nfa(s)),s=0..200);
readlib(laplace): unassign(’t’);
k16:=invlaplace(nfa,s,t);
plot(k16(t),t=0..2);
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