Journal of Computational Physi&§1,448-478 (2001)

®
doi:10.1006/jcph.2001.6779, available online at http://www.idealibrary.col DE &l.

Transparent Boundary Conditions for MHD
Simulations in Stratified Atmospheres

A. Dednerf-1 D. Kroner} I. L. Sofronovj-2 and M. Wesenbefy®

*Institute for Applied Mathematics, University of Freiburg, Freiburg, Germany;
and tKeldysh Institute of Applied Mathematics RAS, Moscow, Russia
E-mail: dedner@mathematik.uni-freiburg.de, dietmar@mathematik.uni-freiburg.de,
wesenber@mathematik.uni-freiburg.de, sofronov@spp.keldysh.ru

Received August 2, 2000; revised March 9, 2001

In this paper we discuss a method of deriving artificial nonreflecting boundary
conditions for systems of conservation laws. We focus on an application from so-
lar physics. The governing equations are the equations of ideal compressible mag-
netohydrodynamics (MHD), which are solved in a gravitationally stratified atmo-
sphere. We derive the necessary equations, discuss implementational aspects, and
show the effectiveness and efficiency of our boundary conditions in test calculations.
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1. INTRODUCTION

Numerical simulations have become an important tool for improving our understandi
of basic physical processes. Many applications of this type involve systems of conserva
laws and are formulated either in infinite domains or in domains which are very large
comparison with the relevant structures. Even in the second case it can be almostimpos
to find a formulation of the problem which is suitable for numerical simulations: If w
perform the simulations in the whole domain with sufficient resolution to capture the sme
scale structures, we waste a great deal of computational effort in uninteresting regi
Therefore, the size of the computational domain has to be severely reduced. This leac
artificial boundaries without physical meaning. In order to close the system of PDEs
have to find suitable boundary conditions on these boundaries. These artificial bounc
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conditions have to guarantee that the solutions in the truncated domain are as clos
possible to those obtained in the whole domain.

One of the physical processes mentioned above is the time-periodic variation in s
activity. Its strength can be measured by the number and size of sunspots. Solar physi
suggest the following model to explain their formation: In the lower convection zon
the magnetic field concentrates in local tube-like structures within a stratified backgrot
atmosphere. Because of magnetic buoyancy these so-called flux tubes rise to the photos
if their fragmentation is prevented by a sufficiently strong magnetic field tangential to th
boundary; their outbreak at the sun’s surface causes the visible sunspots. Hence the evo
of these flux tubes has become a focus of research in recent years; see, e.g., [6, 7, 13, 1!

The simulation of rising magnetic flux tubes requires the numerical solution of the ide
compressible magnetohydrodynamic (MHD) equations. We use an explicit finite volul
scheme with approximate Riemann solvers at the cell interfaces [11]. The computatic
domain is a portion of the solar convection zone with artificial vertical and horizont
boundaries. As in many applications requiring long-time simulations, the problem of findi
suitable boundary conditions on these open boundaries has not yet been solved satisfa
On one hand, small structures have to be resolved and their evolution has to be tracked
a long time period; on the other hand, the computational domain has to be chosen as <
as possible to minimize computational costs. It would be desirable that all boundaries—
vertical as well as the horizontal ones—be transparent for outgoing waves. But since
dominant movement is thase of the tube, the top boundary is the most critical one
the influence of the vertical boundaries is much smaller. For instance, in [13] both verti
boundaries and the bottom boundary are assumed to be “closed lids.” According to |
also the bottom boundary should be transparent. In the present study, we therefore f
our attention on both horizontal boundaries, while we assume periodic vertical bounda
in accordance with [6, 15, 24]. Our foremost concern is the derivation and validation
transparent boundary conditions that are designed with the above application in mind.
details of the physical assumptions and of the choice of the mathematical model are be
the scope of this paper and we consider them to be “input data” from solar physics.

The conditions on the horizontal boundaries should lead to solutions which are (pr
tically) independent of the height of the computational domain. Waves generated in
interior of the computational domain must be allowed to pass through the top and bott
boundary; i.e., an ideal artificial boundary should be transparent for outgoing perturbatic
One method of achieving this is to absorb the outgoing waves by introducing additio
layers at the boundaries. (For solar physical simulations this method was used in [13, Z
As far as we know there is neither an analytical argument nor a detailed numerical st
which shows that this approach meets the stated requirement for a non-reflecting boun
in the case of our application. However, the idea of absorbing layers seems to be a prom
approach. This has recently been demonstrated for many different problems in the forr
“perfectly matched layers;” see, e.g., [1, 5, 25, 32].

Our method of formulating nonreflecting boundary conditions belongs to the class of !
called exactboundary conditions (cf. the reviews[16, 31]). It follows the technique presen
in [30], and develops ideas presented in [3, 17-19, 21, 23, 28, 29], where the derivatio
boundary conditions is considered for different hyperbolic problems. Our method is ba
on the derivation of an analytically exact boundary condition for the hyperbolic equati
describing the evolution of the pressure perturbation. The condition necessarily includ
term that isnon-localwith respect to time at the artificial boundaries. However, by usin
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a special approximation this non-local term can be evaluated in a time-stepping mar
so that the numerical method stdgsal with respect to time. Preliminary results of our
research can be found in [10].

A necessary first step in the derivation of our boundary conditions is the linearization
the MHD equations about a stratified background atmosphere—for other nonlinear pr
lems this approach was used, for example, in [4, 14, 23, 26, 30]. We assume that
perturbations at the boundary are sufficiently small and smooth. Furthermore, we st
the special case of an exponentially decaying atmosphere. This choice is quite reasor
from the physical point of view [8, 20] and permits a sufficiently far-reaching analytic:
study. At the same time, the application of our boundary conditions to other models of
background atmosphere inside the computational domain seems to pose no problems.
deriving the boundary conditions and proving their correctness for the linearized syst
we discuss implementational aspects and compare them with other more direct approa
Our numerical examples illustrate that the structure of the solution is considerably inf
enced by the choice of the boundary conditions. Moreover, using our boundary conditi
we find that even large perturbations are hardly reflected at the artificial boundaries. -
examples indicate that the proposed transparent boundary conditions yield good results
are very cheap with respect to their computational costs.

2. GOVERNING EQUATIONS

The equations of ideal MHD describe the flow of an electrically conducting fluid under tl
influence of a magnetic field. They are obtained from the Euler equations of gas dynan
and the Maxwell equations if relativistic, viscous, and resistive effects are neglected. Tl
are given by the following system of PDEs:

op+V-(pu)=0 (1a)
d(pu) + V- (puu’ +P) = pg (1b)
B+VxBxu =0 (1c)
e+ V-(eu+Pu)=pg-u (ad)
V.-B=0. (1e)

The total pressure tens@yis given by

1 1
= —|B|?)Z - -—BBT; 2
P=(p+ g BF) 7 - BeT @
g=9g(2 = (0,0, g(2))! with g(2) < 0is a prescribed function describing the gravitational
force, which acts in negativedirection. Using an equation of state for the pressure (witl
the constant adiabatic exponent- 1)

— (v — 1o 1o
p=(y 1)(9 2/)|U| 87T|B|)’ (3)

the system can be rewritten as a hyperbolic system in the unknowns densigmentum
pu, magnetic fieldB, and total energg. From (1c) we geb;(V - B) = 0, which allows us
to regard (1e) as an initial condition.
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3. GEOMETRY AND FORMULATION OF THE PROBLEM

We simplify the original solar physical problem in the following way: First, assumin
that the computational domain is small compared with the whole convection zone, we
Cartesian (rather then spherical) coordinates/( z) as in [13, 27]. Second, the computa-
tional domain is considered to be an elementary cell within a periodical structure along
x- andy-axes. Moreover, we restrict ourselves to a two-dimensional situation; i.e., we
sume that all quantities depend onzt and are independent of. Therefore all
y-derivatives in (1a)—(1e) vanish identically.

The domain of interest represents a sufficiently thin layer in the whole convection zo
Therefore it is convenient to consider our computational dorfaim, to be a portion of
the infinite “well” Q 1= Qpot U QeomplU Rtop (S€E Fig. 1),

Q :=[0, %] x (—o0, 00), (4a)
Qcomp = [0, %] x [z, Z]. (4b)
ot := [0, %] x (—00, 7], (4c)
Qiop == [0, X ] x [z, 00), (4d)

with artificial horizontal boundaries

ot := Qcompm Qhot, (58.)
1_‘top = Qcompm Qtop' (Sb)

The governing equations described in the preceding section are considgxggljrand we
assume that the initial conditions for the unknown functions differ from a static backgrou
atmosphere only inside this domain.

We prescribe periodic conditions on the vertical boundaries according to the simpl
cations made above. The main aim of the present study is to find boundary condition:
I"op andTpet that permit us to regard these boundarietassparenfor waves generated
during the simulation. Assuming that strong perturbations of the background atmospt
and strong nonlinear phenomena occur only inside the computational domain, we u
linearization of the governing equations about the background atmosplseeg &amd2pt.
The desired boundary conditions D, andT'ye are obtained through a rigorous analysis
of this linear model in the far-field domai@\ Qcomp
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FIG. 1. Computational domaifcom, far-field domaing2;q,, Qo and artificial boundarieBop, oot
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4. LINEARIZATION

In order to linearize (1a)—(3) iRp and Qper, We split the unknown quantities, u =
(u, v, w)t, B, and p into background values (which are assumed to depend oty and
perturbations:

p(t,x,2) = p(2 + p(t, X, 2),
u(t, x,2) = 0(2) + 0, x, 2,
Pt x,2) = P(2) + p(t, x, 2),
B(t, X, 2) = B(2) + B(t, x, 2).

(6)

The perturbationg,T, p, B are assumed to be small (acoustic perturbations) and must r
be confused with the strong perturbations considered to be initial d&®.if), (see the
preceding section). For the background values we assume

d ]

4z P(2) = 9(2)4(2), (7)
(2 =0, B2 =0, (8)

p=p", y=-const (9)

with g(z) andy as introduced in the governing equations (1a)—(3). Due to (7) and (9) ti
function g(z) and thus all background values are uniquely determingdzf andy are
chosen. Evidently, the functioris (1, B, p are a static solution to (1a)—(3).

Noting that the linearization of (3) yields

p=(r—-D& (10)

we obtain from (1a)—(3) the system of equations for the perturbations

&P + pdx0 + d,(p) = O, (11a)
B+ 0xp =0, (11b)
PO +9,p — pg =0, (11c)
& B+ y P(dx0 + 8,) + pgb = 0 (11d)

and
v =0, (12a)
&B=0. (12b)

We see that under the assumptions of (7) and (8) the linear MHD equations are reduce
Eqg. (12a) and (12b) and the system (11a)—(11d) for the gasdynamic unkpo@n®, P.
Equations (12a) and (12b) can already be used as boundary conditianarfdBon Top
andTy,q; therefore we have to analyze only the system (11a)—(11d).

For the derivation of the transparent boundary conditions we fix the following initial ar
boundary conditions for (11a)—(11d) in the far field:
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e homogeneous initial data
,5, a, w, f)|t=0 =0 in Qtop andeOtv (13)
e boundedness of pressure perturbations at infinity

Pl < o0 atz=+oo, (14a)
[Pl < o0 atz= —o0, (14b)

e conditions of periodicity on the vertical boundariesf

5. EQUATION FOR THE PRESSURE PERTURBATION f

To provide the desired analysis, we pass from system (11a)—(11d) to a scalar equa
From (11a) and (11d) we have

aﬁ—y§a5+w0m—y§mé)=a

The Eqg. (7) and (9) give us

o)
02p = 7 b0
T yp
hence
o P, ~
hp— ng?tp =0. (15)

Using (13), we obtain from (15) that

. p.
P=y—p. (16)
o)
Differentiating (11b) and (11d) w.r.x andt, respectively, we have
25 Pooo | oo o
attp+ypa W — Y Eaxxp—i-pgatw—o. a7

To excludedZw, 3w from (17), we use (11c); then

a
attp+yp(82(gf)) _3Z< Zop>) yop xxp+g(gp_azp) =0.
P P P

Relationship (16) permits us to exclugdrém this equation. Finally we have the following
equation forp:

~ N N 1,5«
aftp—”—;( p+axxp)+gazp+(azg—yTgZE)p=o. (18)
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It is convenient to introduce the function

1@ = p (19)

and the constant
9=y -1L
Then, because of (7) and (9), the coefficients of (18) are expressed in teynisjedrticular,
92 =9'®. (20)
Thus Eq. (18) takes the form

925 — 0q (0, + 02,P) +q’azﬁ+q(‘;) b—o. (21)

Note the following expression for the speed of sodng ./y p/p in the background
atmosphereé(z) = /q(2) /7.

To find the general solution to (21), we have to specify the funagian, which also
serves to define the background values (7)—(9) used for the system (11a)—(11d) ex
for the constany . In the following we provide our analysis for the particular case of al
exponentially decaying atmosphere:

ASSUMPTIONS.1. Let q(2) be of the form
q(z) = a e, (22)

where a> 0, « > 0 are some constants.

Itis easytoseefrom (9) and (19) that (22) describes an exponential law for the backgro
pressure and density, which are uniquely defineal itv, andy are chosen. In particular
we find

é(2) = e %/ av. (23)

Remark. The special choice @f permits us to advance far enough with purely analytica
methods to obtain exact boundary conditions. (This seems to be impossible in the ger
case.) At the same time, such a choice is not exotic: On the one hand, an expone
atmosphere is a suitable model in several physical situations (see [8, 20]). On the o
hand, it is possible to use a different background atmosphere, e.g., governed by a pc
law, insideScomp With & smooth transition to exponential atmosphereSdp and Qpqt.
(Note that we can use different exponential atmospheres in the two far-field domains.)
will address this topic in a forthcoming paper.

6. BOUNDARY CONDITIONS FOR [ ON I'top

Using Fourier transformation w.rt—see (40a)—we pass from (21) to equations for the
harmonicsp* (t, z) with a corresponding eigenvalue

3Pt — v 1q(d%,p" — A%pY) + 99,0 +q (%) p* = 0. (24)
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The Laplace transformatigit (t, z) — p*(2) reduces (24) to an ordinary differential equa-
tion with parametes € [0, co) (the hat ~ denotes the dependencysiin

St — v 1q(az,p" — A*p") +q'9,p" + ¢ <qa/>/|@A =0. (25)
Substituting (22) fory in (25), we have
32,p" + 2099, p* — (A% + as?ve®?) p* = 0. (26)
This equation is reduced to the modified Bessel equation,
Y2+ yf — (Y2 +v)f =0 (27)
by the substitutions

p*(2) = €21 (be??), y = be?,
§=—ad, f=a, b=-+av,
o

3\ 2
V2 = (—) + 92,
o

Because of (14a), the desired solution to (27) is the Macdonald funi€tion) that decays
aso — oo (see [2]). Therefore, the general solution to (26) has the form

p*(2) = Ce 72K, (a W ave?s), (28)

whereC is an arbitrary constant. To exclude this constant, we calculate the deri}?@ﬁfye
from (28) and obtain the relationship

d . . .
;P @=-Bys 2@ atz=z, (29)

where

K/ (@~1J/aver?s)
K,(a~1V/averzs)’

Blp(S. 2) 1= o — Vave'’s (30)

Now we extract those terms from (30) that do not decag as oo . If we introduce the
function

/ -1 z
A{‘Op(s, 7) = a‘1\/£e"zs< Kl Vave's) 1 1 ) . (31

K, (e~ 1v/aderzs) 201/ averzs
(30) is equivalent to

éﬁop(s, 2) = vave*’s+ ot + % - a,&ﬁop(s, 2). (32)
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Because of the identity

vK, (o)

K, (o) = —Kyj1(0) + e (33)
we may rewrite (31) as
A v . Ku+l(0) 1
A?Op(s’ Z) = Atop(o—) = —0 KU(O—) —|— V —|— o + é (34)
with
o = a Waves. (35)

Using asymptotic properties ¢, (o) for largeo, we have

Ky@) 1 1
CKy(o) 1+ 20 + O<02>

(see [2]). Thus (31) decays to 0 as> oco. We denote byA%op(t, z) the inverse Laplace
transformation of&, (s, 2):

Nop(t, 2) = L7 Agp(@)] (x) - with 7 = ter/(Vade?). (36)

To show thatAt*Op(t, Z) exists, we have to consider analytical properties@%(a). The
zeroso; of K, (o) have negative real parts

Res; <0, <0 (37)

(see [2]). Thereforeﬁi{op(a) is analytical for R& > o,. Since

“ 42 -11 1
Aoy = -2 +o(),

8 o 02

the conditions for the existence of the inverse Laplace transformation (36) are satisf
(see, e.g., [22]); moreover, we have the estimate

£t [/ifop(o)] (r) = 0(E™") — 0 asr — oo. (38)

Now we can use (36) to obtain from (29) and (32) the equatian=atz; for each Fourier
coefficientp(t, 2)

2 t
Jare B+ 9,00 + (v + = | B — “—e*‘”/ L t—t,2p 't 2dt =0
tp+zp+<a +5 )0 - [ Myt —rapt.adr —0
or in a more convenient form (taking (23) into account)

&+ €3 + ("“9 " %)cr’k — o’ Ay B = 0. (39)
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Denote byQ and Q! the operators of direct and inverse Fourier transformation w;,r.t.
respectively; i.e.,

fH = (Qf) () ::Xi/re”kxf(x)dx, k=041,+2 ..., (40a)
r JO
. -1 Ak . - Ak @1 AkX _Zi
f00:= (QH(Mhea) = 3, 1™ ae="Ck o (a0h)

wherex; is the width of the well (see Fig. 1). Then the set of conditions (39) for differer
values ofa can be written in physical space as follows:

Btf)—i-éazf)—i-(on?—i—%)éf)—ozzézQ_l{ wx}QPp=0 atz=z. (41)

The notation{ A?okp*} is used to stress that the convolution kernel for each Fourier coefficie
f* depends ony. This is the desired nonreflecting condition for (21)Iagp. We shall not

prove this statement here since our goal is to analyze the system (11a)—(11d), not the s
equation (21); nevertheless, some test calculations for (41) are contained in Section 1

7. BOUNDARY CONDITIONS FOR (11a)—(11d) ONTgp

Using (11c) we exclude the derivative w.etfrom (41). Thus the desired nonreflecting
condition for (11a)—(11d) at = z has the form

P — o + (aﬁ + %) CP+C0p —a?62Q A< QP=0.  (42)

In order to prove this, let us consider the following two linear problems for the vector
unknownsV = (g, G, @, p) in (L1a)—(11d) and a given functioff with suppV°® C Qcomp
Equations (11a)—(11d) in the infinite domdwith

O |n Qtop U Qbot

o the initial conditionsVo = ¢ - and (A)
V n Qcomp
e the boundary conditiond/| < oo for z — +o0;
Equations (11a)—(11d) if2\ Qop With
e the initial conditionsV/ = {30 iI: g:z:np and (B)
|\7| <oo forz— —oc0

h -

e the boundary condltlon% 42 on Top
For both problems the parametq¥sp, andg in (11a)—(11d) are defined through the back-
ground atmosphere (7)—(9) using (19) witlaccording to (22). The vertical boundaries are
assumed to be periodic.

THEOREM7.1.

1. Any solution to problengA) is a solution to problengB).
2. Let us consider a solution to probleB), which is continuously differentiable up to
I'wop. Then it is possible to prolong it intp to obtain a solution to problertd).
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Proof. The first statement is evident since we derived (42) from the representation
a general solution to (11a)—(11d); i.e., (42) is valid for functions which satisfy (11a
(11d). Let us prove the second statement. First we write out the prolongation formulae.
V = (0,0, v, p) be a solution to problem (B). We fix a tinte denote bypr,(t, x) the
trace ofp onT'ysp, and calculate its imagﬁ{ltop(s) i= LQProp- From (28) we find that

K, (¢~ 1V/age*?s)
K, (e~ 1v/adezs)’

b)\ (S, Z) == f)%"[op(s)eiom(Zizl) > 7. (43)

Because, (Co)/K, (o) ~ €107 and we haveC > 1 in (43), the inverse Laplace trans-
formation of p* (s, z) exists. Therefore, calculating the inverse Laplace and Fourier tran
formations of p*(s, z) in (43), we obtain the functio(t, X, ) in Qiop. The remaining
functions inQop are expressed in terms pft, x, z) by using (11b), (11c), (13), and (16):

1 t

u:——a/ Bpdt (44)
P Jo
l t

12}:——0/ 3P — gpdt, (45)
P Jo

- 0 .

o =—070. 46
ypp (46)

We have to prove that our functions G, w, ¢ satisfy (11a)—(11d) iff2:p. Formulae (44)
and (45) immediately give (11b) and (11c). Let us prove (11d). A direct calculation usil
(44)—(46), (18) yields

t
—3tp—%5 xxp+azzp_az(gp)dt+yp / (9P — gp) dt + pgw

vP

N v . -1
=3tp—/ 8§p+gazp+(azg—y—g ) pdt+ — 3z(9/0)dt
0 4 p P

t
+g/ 9B — g + poib dt

L —1 ,p.
ﬂf)‘az(gp) 99,p — Pa.g+ Vngl%Pdt

c\

=0.

A similar direct calculation proves (11a). Thus it follows that (11a)—(11d) are valid i
Q\ Qiop and Qyop; it remains to be proved that they are valid Bgp, i.e., atz = z. Since

p is continuously differentiable a = z, the derivatived; i calculated by (11b) from the
upper and lower side dfyo, has the same value; therefore (11b) is valid at z;. We see
that(i is continuous w.r.tzatz = z; the functionyis also continuous (see (46)); therefore
(11a)isvalid akz = z. Using (11c) and (42) i\ Qp, We pass to (41) and calculaigh on
I"top from the lower side. On the other hand, since (41) is valid¥defined by (43) irf2qp,

we can calculaté, p from the upper side by using (41) as well. Becafige continuously
differentiable onl'y,, both values 0B, p are the same; i.ed,p is continuous az = z.
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Hence (11c) is valid o'yp. This yields the continuity ofv ‘W.r.t. z at z = z. Therefore
(11d)isalsovalidar=z. N

This theorem allows us to use the condition (42)Iag, and to solve the governing
equations just iff2\ Qop instead of in the whole domaf. Although (42) is obtained from
the linear analysis, we use it to close the nonlinear equations (1a)—(@q¥in,. We arrive
at a complete set of equations bg,, if we add (11b), (16) and (11c):

B30+ 3P =0, (47)
p—E?p=0, (48)
Ao +9,p— pg = 0. (49)

Here we used the speed of souhds introduced in Section 5.

8. THE BOTTOM BOUNDARY

For the bottom domaif,,,; we have the same equation (26), but now the general solutic
is given by

2
p*(2) = Ce %, (a Wave?s), 12 = (2) + 92, (50)

We use the Bessel functiohs(o) because of their asymptotic behavior for snagll
l,(c) ~c” asoc — 0O,
which yields
p*(2) ~ "2 < 00 asz— —oo.

Thus (14b) is satisfied.
By formally making a similar analysis as in Section 7, we obtain the following bounda
condition for (21) o et

& p—¢op— (az? + %)éﬁ +a?2Q AKX+ QP=0 atz=12z. (51)

Here we have used

Abo(t, 2) = LA O] (T = tag (2) (52)
and (cf. (34))
v . ha(o) _ 1 L) 1
bot(0) =0 ) +v G+2_Glu(o) 0+2. (53)

Now we have to check whether the inverse Laplace transformation (52) exisjs..For
412 the functionl, (o) has the asymptotic expansion

() ~ & (1_ M—1+ =D -9 (u—Dx—9)—25 +>
' V2ro 80 21(80)? 3!(80)3
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as|o| — oo (see [2]). Substituting this expression into (53), we get (using MAPLE)

11 11

A n! 1
bot(0) ~ (41)2— 1) (80 + 852 + -+ ?pn(v); +) aso — 0o,

wherep,(v) are polynomials of order less tharwith bounded coefficients w.r.

Using the property of correspondence between asymptotic expansions of a funatjon
ast — 0 and its Laplace transformatidif f] (o) asoc — oo (see, e.g., [12]), we find that
the function formally defined in (52) has the asymptotic expansion

; 1 1 n T\n-1
Apor(T) ~ (4 — 1) <§+§T+"'+ Epn(v) (§> +> (54)
ast — 0. This series converges within the finite intervak < 2. Therefore, we can
expect the existence of (52) only up to a finite time. To our knowledge, the current the
of Laplace transformation does not give an answer to the question of whether or not (
actually exists.

Remark. Fort > 2 we have to expect terms with generalized functions in (52). This |
because the function (53) has an infinite number of purely imaginary poles with absol
values equal to the zeros of the Bessel functipfe) according tal, (o) =17 J,(io).

In order to understand the physical reason that an upper limitation with respect to ti
appears, let us analyze (24)dn, by using the theory of characteristics. Equation (24) is
a hyperbolic equation with characteristics defined by

% = +6(z5) = 727 /V/av, (55)

where the local speed of soudds given by (23). Thereforé(z) — oo asz — —oo. By
integrating (55) for the characteristic going+tao starting at the location of the bottom
boundaryz,, we obtain

() =z +a tIn(d — ab(zp)t). (56)

Thus a signal starting frorn= z, arrives at—oo after the finite time

1
th = .
aC(zy)

(57)

This value corresponds to the non-dimensional time 1 (see (52)). If we also take into
account the time which a signal reflected-ato needs to return ta = z,, we have to
multiply this value by 2. Hence we obtain the same upper bauad? as in (54).

Remark. The problems we encounter during the derivation of our boundary conditiol
onTytare caused by the fact that the exponential atmosphere (22) Rggdisiunbounded
asz — —oo. However, we have refrained from using another model of the atmosphere sir
we want to remain in the framework developed for the top boundary. Note that even if
analysis is only valid up to a finite time, the approximation proposed in Section 9 wor
well even for far larger times, as the examples in Section 10 demonstrate.
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Assuming the existence of (54), we continue our analysis for obtaining transparent bot
ary conditions of'pet and get from (51) and (11c)

X P+ CHAW — (ou?+ >Cp ¢gp +a2¢2Q H Al x} QP = 0. (58)

The additional equations for the remaining functions are (cf. (47)—(49)):

ﬁ&tﬂ +op=0 (59)
p—E¢?p=0, (60)
pow +9,p—pg=0 (61)

The statement that (58) is the desired boundary condition is formulated and proved g
similar to Theorem 7.1; one has to stress that the solutions are considered only with
finite time interval.

9. NUMERICAL IMPLEMENTATION

Both Egs. (41) and (51) contain the non-local operators of Fourier transformation &
convolution with respect to time. Computationally, the Fourier transformation is not t
expensive, since we can use FFT algorithms. Because it suffices to treat only the first
Fourier harmonics by (41) and (51), we can even rely on simple discrete counterparts to (:
and (40b). For the remaining shortwave harmonics, the non-local terms in these equat
can be omitted because of their smaller contribution to the whole solution (cf. discuss
in [29]). Computational resources are mainly required for the opera{ggsand A}, of
convolution with respect to time. To reduce the costs, we explore the following approa
at first we approximate the convolution kernels by sums of exponentials; thereafter
recurrence formula for convolution integrals with exponential kernels is used:

t t
I (t) ::/ SOy dt =TIt — 1) + S0 () dt.
0

t—t

Due to this approach, the computational resources required by (42) and (58) are ¢
reasonable with respect to both computational time and storage.

9.1. Approximation of the Convolution Kernels

The approximation of the convolution kernels by exponential sums is made numerica
First we approximate the functioog,, (o) in (34) andAy (o) in (53) by rational functions

- Pn(0)
A(o) i= ————, 62
" Qny1(0) (62)
where P, (o), Qn.1(0) are polynomials of degreesandn + 1, respectively. (The value
of n depends on the accuracy we need.) This approximation is made in advance by u
the MAPLE package. We apply the Chebyshev-éPaltjorithm, which consists of three
consecutive stages:
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1. approximate representation by Chebyshev polynomials:
N(n)
Ano) ~ao+ > aTk(0);

k=1

2. application of the Padlgorithm to obtain the coefficients of a rational approximation

N
=2 k o Do+ Dk beo®
8 + Z o S D
k=1 CO + Zk:l Cko

3. use of the Pazltoefficients with the Chebyshev polynomials:

bo+ Y ko1 Tk(o) . Pa(o)

An(o) ~ - ,
) Co+ Spty & Tk(0) Qnt1(0)

An example of such a code fay is given in the Appendix. The inverse Laplace transfor-
mation of (62) turns out to be a sum of exponentials.gset . ., Bn.1 be the complex zeros
of Qn+1. Then we have

n+1
Qnia(0) = [ (@ = o). (63)
k=1
Since
n+1
Q@) => Tt - Bo. (64)
=1 kel
we get
QB =[] — B0 VYiell...n+1}. (65)
k]
Now assume thagy, ..., Bn.1 are pairwise distinct. Then we may define
P .
b= P yic L nty (66)
n+1(Bj)
and we find

j=1 ket

n+1 el
by __ 1 PB) 170
I Q”“(")g( wrnl! ﬁ“)

RN ol PR |
Qn+1(0) =1 o Kt Bi — Bx
_ R
' Quaale)’
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SinceR, has degree,
Ra(B)) =Pa(Bj) VYjel{l,...,n+1)
and|{B1, ..., Bny1}l = N+ 1, we haveR, = P,. With (62) this yields
n+1 b
'o) = L 7
An(@) ; p—} (67)
Because the inverse Laplace transformation is linear and fulfils
-1 1 T
LY ——1| () =¢", (68)
o—B
we end up with
. n+1
A~ A= LTHANO] (e alt) =) bjerthit, (69)
j=1

If we use this approximation for the kerné[*op, we obtain convergence for increasing
in numerical experiments. For instance, Fig. 2 (left) shéWg(t) with v = 15.78 and the
deviation from the approximation with = 8. This is the typical situation we observed
within our computations for any value of

However, for the bottom boundary the situation is quite different. Figure 2 (right) sho
the approximations of the “bottom” kernel with the same- 15.78 calculated fon =
8, 12, 16. There is no convergence; moreover, several valuggiof(69) have positive real
parts, which lead to divergence of the convolution integral. The reason for this behavio
clear from the analysis made in Section 8: the ke#iﬁ,%[ can be represented by a function
only up to a finite time. (It is interesting to note that the graphs in Fig. 2 confirm this fac
they match each other in an initial finite interval.)
Onthe other hand, there is no restriction on the simulation time imposed by the top bou
ary. Evidently, the difficulty with the bottom boundary occurs because of the admission

1000 -

-
=3
=3
T

Kerel

Kemel, difference*10'"
<o

-500 -

=3
S

-1000 -

PR N S R R

. MR , - L. .1 L
15 2 1500 0.5
tau

1
tau

FIG. 2. v =1578. Top boundary (left): kernell;¢(z) (solid line), and the difference; () — Aj(r) mul-

tiplied by 10° (dotted line). Bottom boundary (right): kernelg () (solid line),.4;,(r) (dotted line) and4}()
(dashed line).
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nonphysical background functions which are unbounded-as—oo. One possibility for
overcoming this problem would be to change the law (22) in the vicinity ef—oco (e.g.,

by puttingae = 0 for large|z|, z < 0). We propose another approach which permits us t
remain in the framework of the method developed: we add the requirement that admiss
exponential approximations t&,, have to beboundedfor 0 <t < co. This means that
we have to find a representation of the form (69) which approximates the “bottom” kert
along the initial time interval and which has iy with positive real parts (in order to
keep the convolution integral stable in long-time simulations). We implement the followir
procedure to do this. Let us consider the functi{f¥)/I, (o) in the complex plane. Since

I,(c) =i7"J,(io), the corresponding residues are easily computed:
R 1) (o) K .
esﬁ =1 ato =diaf, whereJ,(a¥) =0, k=12....

We fix an integer numbe > 1 and form the rational function

Ry (o) = 22

i1 o2+ (
wherebyal, ..., aM e R are the firstM positive roots ofJ,. Hence the auxiliary function
(Abot) y = Apot + Ry

hasnopolesinthecircle € C||¢| < aV}. Assoon aswe have constructed a representatic
oftype (69) with Res; < Ofor (A} ,)m, the corresponding approximationtgi,, is obtained
by simply subtracting the term

M M
,I[RKA}(‘E) = ZZa\Ifsin(aL(r) — Z |ake*'a T ia‘v‘eia5f),
k=1

k=1

which is evidently bounded for & t < co. Therefore, the approximation iy, is of the
form (69) with bounded coefficients. Note that although the Laplace transformation is line
this trick has an effect because the numerical procedure of comguting;} is nonlinear.
Without our modification, we obtained bounded approximationd;gfonly for very small
values ofn; n could not be chosen large enough to yield sufficiently transparent and sta
boundary conditions. Our modification enables us to compute bounded approximations
an arbitrary value ofi if M ~ n. (For small values of we had to choos# slightly larger
thann.) These approximations lead to boundary conditions which are transparent and st
even in long-time simulations.

9.2. Discretization of Transparent Boundary Conditions

All boundary conditions (41), (47)—(49), (51), (59)—(61) are discretized in a simil
manner. As an example, we consider Eg. (41), concentrating on one of the Fourier mc
governed by (39). Lefb;, 8} be the corresponding coefficients of the representation (6¢
forthe kerneIAt*OID with a giveni. Substituting itin (39) and omitting ~ aridin the notation,
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ey
11

X unknown
12+ o known (old result)
# known (interpolation)
0<_
-1/2 1 6

FIG. 3. Mesh for discretization.

we arrive at the equation

t n+1
dp+Eop+¢ (az‘/‘ + %) p— a262/ Z b= pt’, 2 dt’ = 0. (70)
0
j=1

We discretize (70) on a grid stencil as sketched in Fig. 3 in the following manner:

e D, .i, denotes the discrete value pfat the grid poinit', z,).

e The points at positiory are the last ones within the computational domain; those
z; are “ghost points.”

e The “half” time and space levels are defined as usual:

1 1 1
th2 = §(t°+t1), t 2= E(t‘1+t°), 212 1= 520+ 20).

(Note that the boundaryyo, is located aiz; = z;,5.)

e We assume that the values within the computational domain are given (updated) u
timet', while the “ghost values” are known up td(including p_1/2.12).
e To obtainpy 1, we discretize (70) using central differences arotid, z;5).

For the discretization of (70) we selt, := t? —t% Az:= z — 75 and choose the ap-
proximations

1 1
ap(t? z12) ~ Tl/z(pl,l/Z — Poy2) & m(pl,o + Pr1— Poo— Po1). (71a)

1 1
3.p(tY2 z10) ~ E(pl/zl — Py20) & E(po,l + P11 — Poo — PL0)s (71b)

1
P1/2,1/2 == é(pO.l + PLo), (71c)

1
Po,1/2 := E(po,o + Po,1). (71d)

To handle the convolution term in (70), we defing = t¥2 —t=%2, p(t) := p(t, z1,2),
¢ := €(zy/2) and compute the integral
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t1/2 n+1 n+1 £1/2
12 _y 1/2_y
/ Z bj geBit 121"y p(t/) dt = Z bj ( exthit 12t") p(t/) dt/)
0 ; i 0

j=1 j=1

n+1 t-1/2 t1/2
=3 b, ( /0 e p(t) dt + / eeneo P(t’)dt’> 72)
i=1 -

n+1

t
N
0

i=1

~1/2

Atg
A nty dt + / eeh (Ao—t) y t=1/2 4 ¢ dt/> .
0

If the grid is uniform in time, i.e. Aty = Aty =: At, we can use the Simpson formula for
the approximation of the second integral,

At
/ eaéﬁ, (At—t") p(t—l/Z + t/) dt’
0

At

6 (&P p_y 2170 + 46" P12 D0 15+ Prj2ys2) - (73)

In the case of a non-uniform grid with respect to time we apply a quadrature formula to
quadratic interpolation op_1/2 1,2, Po,1/2, and pa2 1/2. From the calculations up 9 we
already know an approximation of the first integral on the r.h.s. of (72),

t—1/2

A / @A U p) dt. (74)
0
Based on (72) we define the recurrence rule

. _ At v v
A}/z = e PIAA vz - (P 15170+ 46# P12 20 15 + Pr2as2) . (75)

A= A

Thus we get from (72)—(75)

/2 n4+1 n+1

/o Y bt O p g dt &y oy A2 (76)
j=1

i=1

Note that the error in the approximation (76) occurs only because of (73); the recurre
rule (75) is stable due to nonpositive real parts of the coefficignts
Combining (70), (71a)—(71d) and (76) we obtain

1 ¢
P11~ <2At(po,o + Po,1 — Pro) + m(po,o + Pro— Po1)

é o n+1 l é
¢ o 242 CAL2 ).
2(az9+ 2>(Po,1+ P10) +aC Zbl i oAt T 2z

j=1

(77)

We see from (77) that the computational costs of defining the boundary paluare
proportional to the number of terms in the sum (69). An analysis of the examples frc
Fig. 4 and Table | in the next section shows that a highly accurate representation of the f
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FIG.4. Convergenceratesfai att = 20 (left) andig att = 100 (right) with transparent boundary conditions
0N ot aNdTigp.

(69) can be achieved for comparably small values.dfrhe approximation error in (69) is
the second source of a residue in discretizing (39); this error is hidden in our analysis si
we treated (70) instead of (39).) Note that estimates of the approximation (69) for the c
of the wave equation with a constant speed of sound are contained in [3].

TABLE |
Errors and Convergence Rates

A1, t = 20 : Transparent boundary conditionsiog; andT'p

Local n=4 n=28 n=16
h Error eoc Error eoc Error eoc Error eoc
0.025000 0.171451 0.000346 0.000289 0.000289
0.012500 0.172893 —-0.01 0.000365 —0.08 0.000072 2.00 0.000072 2.00
0.006250 0.173592 —-0.01 0.000369 —0.02 0.000021 1.79 0.000018 2.00
0.003125 0.174226 —0.01 0.000370 -0.00 0.000020 0.06 0.000005 2.00
0.001563 0.174542 —0.00 0.000370 —0.00 0.000020 0.02 0.000001 2.00
n = 16,t = 100: Transparent boundary conditionsIayg; andI',
Ao A1 A2 Az
h Error eoc Error eoc Error eoc Error eoc
0.025000 0.000936 0.001475 0.003716 0.008199
0.012500 0.000231 2.02 0.000357 2.05 0.000918 2.02 0.002013 2.(
0.006250 0.000061 1.91 0.000089 2.01 0.000230 2.00 0.000504 2.(
0.003125 0.000016 1.96 0.000023 1.97 0.000057 2.00 0.000127 1.
0.001563  0.000004 1.95 0.000006 1.88 0.000014 2.00 0.000032 2.(
Ag, t =100 : Transparent boundary conditionsiag; andT',
Local n=4 n=28 n=16
h Error eoc Error eoc Error eoc Error eoc
0.012500 0.056404 0.020772 0.020896 0.020896
0.006250 0.066722 —0.24 0.004484 2.21 0.004604 2.18 0.004605 2.18
0.003125 0.068933 —0.05 0.001020 2.14 0.001130 2.03 0.001131 2.03

0.001563 0.071974 —-0.06 0.000303 1.75 0.000280 2.01 0.000281 2.01
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10. NUMERICAL TESTS

10.1. Linear Problem for Single Fourier Harmonics

For our first numerical tests we discretize (24) and compare the numerical solut
obtained with our transparent boundary conditions (77) to a reference solution compt
in a large domain for different values of From (22) we have

q'(2) = —20q(2) = —2av¥E2, (%) =0. (78)
Therefore (24) reads
32 p* — 6202,p" — 209629, p* 4 1262p* = 0. (79)

Using standard second order finite differences we get an explicit scherfie fdle use the
impulse

r))L(O’ 2) = ﬁé(Z) — {e_ @92 (z€ [4, 6]) (80)
0 (ze R\[4,6))

andd; p*(0, -) = 0 as initial conditions for our calculations. The parameters for the bacl
ground solution are set ®:= 2.0, « := 0.4, andy := 5/3. As a computational domain
we useQcomp = [4, 6]. Thus the artificial boundarid%,: andI'yp are located at, = 4 and

z; = 6, respectively.

One of our main concerns is to perform stable and accurate long-time computatic
However, the boundary condition diye is @ potential source of difficulty: According
to the analysis in Section 8, the proposed transparent boundary condition (51) has
theoretical justification outside the initial time interval. From (57) we estimite-243 as
the critical simulation time. (Note that the modification introduced in Section 9.1 guarante
the stability of the approximation beyond this time.)

In the following we want to test the transparency of our boundary conditions numerical
We compare results computedSta,mpusing our boundary conditions with a solution com-
puted in the larger reference domain [0, 10]. The question remaining is which bound
conditions should be chosen for the reference domain. Using the equation for the cha
teristics (55), we can estimate that signals fr@gmpreach the boundaries of the reference
domain att ~ 17. Therefore, up to the simulation timhex 34 no signal reflected at these
boundaries influences the reference solutiof2ipnp Thus the results shown in Figs. 5-7
areindependenbf the boundary conditions used for the reference domain. On the oth
hand, itis also evident from Section 8 that there is no reference domain large enough to
out the possibility that reflected waves are generated which could influence the refere
solution inQcemp for t > 2ty & 43. In this case, we rely on a different test, which allows
us to use our boundary conditions for the computation of the solutions in the referel
domain. Indeed, transparency of a boundary condition means that the solution does
depend on the size of the domain. In the case of a numerical simulation this holds wit
an approximation error. If the difference between the solutions comput@g,if, and in
the reference domain, using the same boundary conditions, converges tolzero @swe
can conclude that these boundary conditions are in fact transparent.
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FIG. 5. Results fora; att = 20 (left) andig att = 35 (right) with h = 0.00625 and different artificial
boundary conditionsQcomp, = [4, 6].

In the following we considek; andg as typical examples; the results foy are very
similar to those for;. We use the same grid spacihdor the calculations if2¢omp and
for the reference solutions. As a measure of error we use the maximal absolute valu
the difference between these two solutions at the grid poinik.ip,at a fixed time. The
experimental order of convergence (eoc) is then computed as usual. The simulation ti
are chosen in such a way that noticeable disturbances pass through the bound2yigs of
(see Fig. 5).

The results in Table | and Fig. 4 show that by choosing an appropriate valuevef
achieve the expected second order accuracy with our boundary conditioater§ to the
number of terms in the non-local convolution sum in (77); “local” means that this term
omitted, which leads to boundary conditions which are comparable to characteristic-be
boundary conditions.) Foxg we obtain the optimal quadratic convergence (and consta
errors on a fixed grid for increasing for n = 8. (If we think of reasonable grid sizes for
two-dimensional simulations, even= 4 suffices.) By contrast, we really “need’= 16
in the case of;. In the example considered this behavior is caused by varying influenc
from the bottom boundary: Fag with small indexk (e.g.,k = 1), the amplitudes of dis-
turbances actually reachirig,; are quite large, and therefore they strongly influence th
overall errors; for larger indicels (e.g.,k = 9) the disturbances at the bottom boundary
are almost negligible. Moreover, Table | shows that the difference between the soluti
in the computational and the reference domain is of the same order as the discretize
error if we choosen compatible with the grid spacinig. Thus we conclude that our ap-
proximation yields transparent boundary conditions in the linear case even for long-ti

0.6

[———
~~~~~~~ 1=28
[
04|

0.2 |

difference to reference solution
ditference to reference solution
=S

; 04

02 " N N " " .06
4 42 44 46 48 5 52 54 56 58 8 54 58 5.6 5.7 5.8 5.9 ]

z z

FIG. 6. Deviations from reference solution with Dirichlet conditions far(left) and Ay (right) with h =
0.00625 inQcomp = [4, 6]. FoOr Ao we observe no activity for € [4, 5.4].
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FIG. 7. Deviations from reference solution with transparent boundary conditions,@rand yp: Ay for
n =16 (left) andi, for n = 8 (right) with h = 0.00625 inQcomp = [4, 6]. For A we observe no activity for
ze€[4,54].

simulations. Note that the simulation breaks down if we do not use the modification d
cussed in Section 9.1.

In Fig. 5 we compare our results with those obtained using simple Dirichlet conditio
(fixing the initial “zero disturbance” at the boundary). We see that the choice of appropri
boundary conditions is absolutely crucial for obtaining meaningful numerical solutions
the truncated domain. The evolution in time of the pointwise deviation from the referer
solution is shown in Figs. 6 and 7: The errors in the solution with our transparent bound
conditions are smaller by several orders of magnitude than those obtained with Diricl
conditions.

The tests presented show that the second order approximation of our boundary conditi
with a special treatment of the convolution kernels for the bottom boundary, works well f
the linear wave problem (79) with an exponential speed of sound.

10.2. One-Dimensional MHD Equations

We now study how well our boundary conditions perform in calculations with the fu
nonlinear MHD equations. The transparent boundary conditiofiggandl'yotare given by
(41), (47)—(49) and (51), (59)—(61), respectively. First we examine the situation in one sp
dimension (assuming that the solution to (1a)—(3) does not depend on the space vari
X). We discretize the MHD equations §2comp by a first-order finite volume scheme, using
the “simple Riemann solver” developed by Dai and Woodward [9] to calculate the fluxe
Due to the discretization errors in the finite volume scheme, our code was not capabls
retaining the static background atmosphere. This caused severe problems in our calculat
Therefore we have added a simple fix to the finite volume algorithm, which enables «
code to keep the background atmosphere exactly static. In one space dimension, the
evolution of the discrete solution now reads as follows:

UMt = U — AtG (U, UM, UM ,) + AtG(Ui_1, U;, Uj). (81)

U is the vector of conservative variables dddre the corresponding values of the back-
ground atmospheres describes the spatial discretization of (1a)—(1d) as in [11]. Th
additional term in (81) should be equal to zero since the background atmosphere is a s
solution to (1a)—(3). Hence we have added a zero on the PDE level. Within the num
cal scheme this term cancels out the errors induced by the averaging of the backgrc
atmosphere. The boundary conditions (41), (47)—(49), (12a), and (12B).foend (51),
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(59)—(61), (12a), and (12b) fdl,. are discretized by a second order finite difference schen
similar to the one described in Section 9.2. The values obtained are used as ghost cell v
in the finite volume scheme.

As already noted, the background atmosphere is uniquely defined by the vajues of
1, o > 0,a> 0 (see Section 6). For the results shown in this section we chpose
V3,0 :=0.1,a:=4.2. This results in a slower decay of the density compared to t
atmosphere used in the preceding section. In our applications we study magnetic flux tu
These are strong local magnetic field concentrations normal to the computakional (
plane, with an additional magnetic field tangential to the tube boundary (see Section 1
[27]). Characteristic properties of this setting are a lower density and a lower gas pres:
within the flux tube. The gas pressure is chosen in such a way that the total pressure
pressure plus magnetic pressure) in the flux tube is balanced with the total pressur
the surrounding atmosphere. With these initial conditions in mind, we test our transpat
boundary conditions for the setting

(0,2 = { ,?(z +15) (ze [0.2_, 0.4]), (©22)
p(2) (otherwise,
uy(0, 2) := 0.025¢ (0.3)e100z-0.3° (82D)
z—0.3
B(0.2) := { 0005%1" (z<[02.04). (82¢)
0 (otherwise,
Bx (0, 2)2
PO, 2 = p(2 - %, (82d)
T

and homogeneous initial conditions for all other quantities. These initial conditions leac
arise of the “flux tube” located at [0.2, 0.4]. Waves of small amplitude are generated wh
move at a far higher speed than this density “perturbation” (see Fig. 8).

As in the preceding section we compare results computed in a small domain us
artificial boundaries with a reference solution obtained in a much larger domain (using

0.08

ger'\sity t=0 -----
ensity t=4 —— |
0.07 z-velocity t=0 - -- - -
z-velocity t=4 ——
0.06 J

0.05
0.04
0.03
0.02

0.01

-0.01

FIG. 8. Reference solution: Density (top) and velocity (bottom) at time 0 andt = 4 calculated with
h = 0.001 in the domain-5, 6]. Only that part of the reference domain is shown which has been influenced |
the initial perturbations i®2.,mp = [0, 1]. At time t = 4 two waves here moved through the boundarieR gf,,
whereas the “flux tube” has moved only slightly upward.
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same grid spacin@). We chooseQ¢omp= [0, 1] and [-9, 11] as reference domain and
compare the performance of different artificial boundary conditons for the calculations
Qcomp

Dirichlet boundary conditions

d(p, U, B, Plryguriep = 0 (dbc)
Neumann boundary conditions
d9z(p, U, B, P)Iryouriep = 0- (nbc)
local transparent boundary conditions

(41) and (51) without the convolution term

(tbc—loc)
(47)—(49) and (59)—(61)
transparent boundary conditions
(41), (47)—(49), (51), (59)—(61) (tbc)

All four conditions are exact as long as no perturbations have reached the boundaries
always use identical boundary conditionsIiya; andI iop.

In Fig. 9 we compare solutions computed iomp With solutions obtained in larger
domains using (tbc) and (dbc). We have refrained from including the (nbc) results sir
they were much worse. The results with (tbc—loc) are close to the solutions computed v
(dbc) (also see Fig. 10). For our application, the position and shape of the “flux tube’
crucial. Only our transparent boundary conditons (tbc) are capable of reproducing this |
of the solution with a high degree of accuracy (cf. Fig. 9 (left)).

In Fig. 10 we compare the solutionsty.mpat fixed timeg with the reference solutions
using the sum of the1-distances in the variablest, -), u(t, -), B(t, -), andp(t, -). For the

i initial —— ] 0.044 ) j ) ' j Tinitial —
0.044 dbc-reference (t=30) dbe-reference (t=50)
dbe (t=30) -+ | 0.042 dbc (=50

o0 m
0.038

0.036

0.042

tbc-reference (t=50) =
toc (t=50) ©

c (1=
tbc-reference (1=30)
tbe (t=30)

004 |
0038 |
0.036 |

density
density

0.034 - 0.034

0.032 0.032
0.03

0.028

0.03 [
0.028

0.026 |- I8 nserenr} 0.026 |
02 0.25 0.3 0.35 0.4 0.45 03

FIG. 9. Comparison of the solutions if2.,mp With two reference solutions computed with (dbc) and with
(tbc) usingh = 0.004. Left ¢ = 30): The reference solutions are indistiguishable and the solutix,jr, with
(tbc) is very close to the reference solutions. Right(50): The solution with (tbc) irf2comp is still close to the
reference solution with (tbc). This demonstrates that our conditions are transparent even in the nonlinear
Both solutions with (dbc) differ significantly from the (tbc) solutions and even from each other.
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FIG. 10. TheL-norm of the difference between the reference solution and the solutiehifipis shown
for different values of the grid spacing. The reference solution and the solutionsSi,,, are calculated
using identical grid spacing. In the left figure the comparison is made atttin@5, in the right figure at
timet = 75.

computation of the reference solution we use our boundary conditions, although one ca
assume that they are genuinely transparent in the nonlinear case. The linearization pre
results in an unavoidable error. Thus we cannot expect the solution obtaiskgnipto
converge to the reference solution. The boundary conditions for the reference domain
influence the reference solution§tyempfor t > 28. Therefore, the results in Fig. 10 (left)
are independent of the conditions imposed on the boundaries of the reference domain
this setting of the atmosphere we compuite2 48. Hence fot > 48 the values i192compOf
anyreference solution may depend on the boundary conditions. In order to check whe
the results in Fig. 10 (righ@ctuallydepend on these conditions, we have compared the
with the corresponding results for the reference domaitf] 15] with both (tbc) and (dbc).
Itis worth noting that we have found no differences in these cases, which does not hold if
use (dbc) instead of (tbc) for the original reference doma# [L1] (see also Fig. 9 (right)).

We observe that the error induced by (tbc) is up to one order of magnitude sma
than for any of the other approaches. Moreover, using (tbc) the error is decreased slic
by grid refinement, whereas it grows for the other boundary conditions. Thus we
conclude that even in the nonlinear case our boundary conditions lead to a stable
accurate approximation of the solutionSigomp

10.3. Two-Dimensional MHD Equations

For our two-dimensional test calculations we use the same setting as for the c
dimensional calculations; the only modification of (82a)—(82d) is a sinusoidapendency
in the initial values foiu,:

u,(0, X, 2) := (coS 2 (X — 0.5)) + 1)0.025¢(0.3)e™1002-03?, (83)

For the computational domain we choose the unit sq2asg, := [0, 1] x [0, 1]. The initial
disturbance in the vertical velocity, causes the “flux tube” to rise faster in the middle of
the domain. This leads to the development of a “mushroom” shape similar to a class
Rayleigh—Taylor instability (see Fig. 12). As in the 1D simulations two high speed wav
move upward and downward through the atmosphere; cf. Figs. 8 and 11.

We again compare the results@iomp using the four boundary conditions described in
the preceding section diy; andT'yo, With a reference solution. As reference domain we
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FIG. 11. Isolines of the vertical velocity for the 2-D problem ., With transparent boundary conditions
(left) and Dirichlet boundary conditions (right). The middle picture shows the reference solutieg.ip All
solutions are computed withh = 0.025. At the displayed time= 25 the “flux tube” has not yet reachéd,, .
Note that small perturbations have already reached the top and bottom boundaries via acoustic waves.

take [Q 1] x [9, 11], which is 20 times larger thaR.,mp We use a finite volume scheme
on a Cartesian grid analogous to the one described in the preceding section. The me
80 x 80 for Q¢omp and 80x 1600 for the reference domain. Thus both grids match eac
other inQcomp Based on our experience described in Section 10.1, we use approximati
of the convolution kernels—see (77)—with= 14 for'no; andn = 8 for I'p; We take the
non-local term only for the first 20 Fourier harmonics (see discussion at the beginning
Section 9). Foio we useM = 18, whereaM = 14 is sufficient for the remaining Fourier
modes. Since the background atmosphere is the same as in the previous example, we
find 2, ~ 48. As before, at ~ 28 waves reflected at the boundaries of the reference dome
may have reache@comp

Figure 11 shows an isoline representation of the vertical velocity=a25. On the left
and on the right we see the solutions computed2igmp with (tbc) and (dbc), respec-
tively. The middle picture is the reference solution. At this moment, disturbances he
moved through the top and the bottom boundary. Note that the (tbc) result can hardly

FIG. 12. Density plot of the solution to the 2-D problemg,m, With transparent boundary conditions (left)
and Dirichlet boundary conditions (right). The middle picture shows the reference solufipg,nAll solutions
are shown at = 35 withh = 0.025.
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FIG. 13. L*-norm of the difference between the reference solution and the solutiéhs,ipversus time for
a 2-D calculation withh = 0.025. On the left the development of errors is shown for the whole time simulated; ¢
the right only for the first part of the calculation using a logarithmic error axis. Note that the “flux tube” reach
INp att =~ 30 (see Fig. 12).

distinguished from the reference solution. On the other hand, the (dbc) solution is notice:
different.

In Fig. 12 (middle) the density of the reference solution is shown together with the so
tions inQcompwith transparent boundary conditions (left) and Dirichlet boundary conditior
(right). At this time, the “mushroom-shaped” region with lower density has reaChgd
and begins to move through the boundary. The solution obtain€xign, with (thc) still
accurately reproducing the shape and position of the “mushroom,” whereas the Diricl
conditions lead to the wrong shape. Of the three boundary conditions (dbc, nbc, tbc—
we use to verify the quality of our transparent ones, the Neumann boundary conditi
(nbc) yield by far the worst results, while the results using the other two techniques
approximately the same. This can be seen in Fig. 13. As in our 1-D calculations, the er
for (tbc)—up to the point where the low density region readhggt ~ 30)—are one order
of magnitude smaller than the errors produced by the other boundary conditions. Bey
that time we still get the best solution with (tbc).

11. CONCLUSIONS

We have proposed transparent boundary conditions for problems governed by the M
equations with an exponential equilibrium atmosphere as background solution in the
field. These conditions are obtained by linearizing the MHD system about the backgro
atmosphere. They permit the use of a truncated computational domain with artificial h
zontal boundaries. We have proven that these boundary conditions are exact for the li
system of perturbations. In numerical tests for the pressure perturbation we have obta
the expected quadratic convergence. The results for the full nonlinear MHD system in
and 2D are still good: the deviations from the reference solution are up to one orde
magnitude smaller than those obtained with Dirichlet, Neumann, or characteristic-ba
boundary conditions.

Although our transparent boundary conditions involve a nonlocal convolution term wi
respect to time, we are able to obtain a numerical algorithm whidbce with respect
to time. Therefore, the costs for the numerical evaluation of the boundary conditions
almost negligible: in our 2-D example it took less than 1% of the overall CPU time (s
Fig. 14).
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FIG. 14. Time used for the whole 2-D calculation §&..m, for different grid sizes in comparison to the time
required for the calculation of the boundary values with (tbc).

The extensive tests presented show that the proposed conditions are very effective
efficient. In a forthcoming paper we will focus on the advantage these conditions offer
multi-dimensional applications in solar physics.

APPENDIX: EXAMPLE OF MAPLE PROGRAM

Digits :=100; degp :=16;
koef _a =2; koef _alpha:=0.4;
koef .gamma:=5/3; koef _theta:=1[(koef _gamma-1)
n:i=1; p _lambda:=evalf(2 *Pi xn)
nu:=evalf(sqrt((p _lambda/koef _alpha) "2+koef _theta ~2))
an:=10 “degp;
ak:= proc(s)
anx(s xBesselK(nu+1,sYBesselK(nu,s) + n u-+s+ 1/2)
end;

smax:=4 xnu; infolevel[chebyshev]:=3;
c2:=chebyshev(ak,s=10 “(-10)..smax, 10  “(-2 =xdegp-1))
readlib(unassign): unassign(T)
c3:=convert(c2,ratpoly,degp,degp+1)
with(numapprox):with(orthopoly)
fa:=confracform(subs(T=orthopoly[T],c3))
nfa:=normal(fa/an}

Digits:=15;

#plot(10 ~(12) =evalf((ak(s)yan-nfa(s)),s=0..200);
readlib(laplace): unassign('t’)
k16:=invlaplace(nfa,s,t)

plot(k16(t),t=0..2)
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